86 KiB
精尽 Netty 源码解析 —— Channel(五)之 flush 操作
1. 概述
本文接 《精尽 Netty 源码解析 —— Channel(四)之 write 操作》 ,分享 Netty Channel 的 #flush()
方法,刷新内存队列,将其中的数据写入到对端。
在本文中,我们会发现,#flush()
方法和 #write(Object msg, ...)
正常情况下,经历的流程是差不多的,例如在 pipeline 中对事件的传播,从 tail
节点传播到 head
节点,最终交由 Unsafe 处理,而差异点就是 Unsafe 的处理方式不同:
- write 方法:将数据写到内存队列中。
- flush 方法:刷新内存队列,将其中的数据写入到对端。
当然,上述描述仅仅指的是正常情况下,在异常情况下会有所不同。我们知道,Channel 大多数情况下是可写的,所以不需要专门去注册 SelectionKey.OP_WRITE
事件。所以在 Netty 的实现中,默认 Channel 是可写的,当写入失败的时候,再去注册 SelectionKey.OP_WRITE
事件。这意味着什么呢?在 #flush()
方法中,如果写入数据到 Channel 失败,会通过注册 SelectionKey.OP_WRITE
事件,然后在轮询到 Channel 可写 时,再“回调” #forceFlush()
方法。
是不是非常巧妙?!让我直奔代码,大口吃肉,潇洒撸码。
下文的 「2.」、「3.」、「4.」、「5.」 和 《精尽 Netty 源码解析 —— Channel(四)之 write 操作》 非常类似,所以胖友可以快速浏览。真正的差异,从 「6.」 开始。
2. AbstractChannel
AbstractChannel 对 #flush()
方法的实现,代码如下:
@Override
public Channel flush() {
pipeline.flush();
return this;
}
-
在方法内部,会调用对应的
ChannelPipeline#flush()
方法,将 flush 事件在 pipeline 上传播。详细解析,见
「3. DefaultChannelPipeline」
。
- 最终会传播 flush 事件到
head
节点,刷新内存队列,将其中的数据写入到对端。详细解析,见 「5. HeadContext」 。
- 最终会传播 flush 事件到
3. DefaultChannelPipeline
DefaultChannelPipeline#flush()
方法,代码如下:
@Override
public final ChannelPipeline flush() {
tail.flush();
return this;
}
- 在方法内部,会调用
TailContext#flush()
方法,将 flush 事件在 pipeline 中,从尾节点向头节点传播。详细解析,见 「4. TailContext」 。
4. TailContext
TailContext 对 TailContext#flush()
方法的实现,是从 AbstractChannelHandlerContext 抽象类继承,代码如下:
1: @Override
2: public ChannelHandlerContext flush() {
3: // 获得下一个 Outbound 节点
4: final AbstractChannelHandlerContext next = findContextOutbound();
5: EventExecutor executor = next.executor();
6: // 在 EventLoop 的线程中
7: if (executor.inEventLoop()) {
8: // 执行 flush 事件到下一个节点
9: next.invokeFlush();
10: // 不在 EventLoop 的线程中
11: } else {
12: // 创建 flush 任务
13: Runnable task = next.invokeFlushTask;
14: if (task == null) {
15: next.invokeFlushTask = task = new Runnable() {
16: @Override
17: public void run() {
18: next.invokeFlush();
19: }
20: };
21: }
22: // 提交到 EventLoop 的线程中,执行该任务
23: safeExecute(executor, task, channel().voidPromise(), null);
24: }
25:
26: return this;
27: }
-
第 4 行:调用
#findContextOutbound()
方法,获得下一个 Outbound 节点。 -
第 7 行:
在
EventLoop 的线程中。
- 第 12 至 15 行:调用
AbstractChannelHandlerContext#invokeFlush()()
方法,执行 flush 事件到下一个节点。 - 后续的逻辑,和 《精尽 Netty 源码解析 —— ChannelPipeline(四)之 Outbound 事件的传播》 分享的 bind 事件在 pipeline 中的传播是基本一致的。
- 随着 flush 事件不断的向下一个节点传播,最终会到达 HeadContext 节点。详细解析,见 「5. HeadContext」 。
- 第 12 至 15 行:调用
-
第 16 行:
不在
EventLoop 的线程中。
- 第 12 至 21 行:创建 flush 任务。该任务的内部的调用【第 18 行】的代码,和【第 9 行】的代码是一致的。
- 第 23 行:调用
#safeExecute(executor, task, promise, m)
方法,提交到 EventLoop 的线程中,执行该任务。从而实现,在 EventLoop 的线程中,执行 flush 事件到下一个节点。
5. HeadContext
在 pipeline 中,flush 事件最终会到达 HeadContext 节点。而 HeadContext 的 #flush()
方法,会处理该事件,代码如下:
@Override
public void flush(ChannelHandlerContext ctx) throws Exception {
unsafe.flush();
}
- 在方法内部,会调用
AbstractUnsafe#flush()
方法,刷新内存队列,将其中的数据写入到对端。详细解析,见 「6. AbstractUnsafe」 。
6. AbstractUnsafe
AbstractUnsafe#flush()
方法,刷新内存队列,将其中的数据写入到对端。代码如下:
1: @Override
2: public final void flush() {
3: assertEventLoop();
4:
5: // 内存队列为 null ,一般是 Channel 已经关闭,所以直接返回。
6: ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
7: if (outboundBuffer == null) {
8: return;
9: }
10:
11: // 标记内存队列开始 flush
12: outboundBuffer.addFlush();
13: // 执行 flush
14: flush0();
15: }
-
第 5 至 9 行:内存队列为
null
,一般是 Channel 已经关闭,所以直接返回。 -
第 12 行:调用
ChannelOutboundBuffer#addFlush()
方法,标记内存队列开始 flush 。详细解析,见 「8.4 addFlush」 。 -
第 14 行:调用
#flush0()
方法,执行 flush 操作。代码如下:/** * 是否正在 flush 中,即正在调用 {@link #flush0()} 中 */ private boolean inFlush0; 1: @SuppressWarnings("deprecation") 2: protected void flush0() { 3: // 正在 flush 中,所以直接返回。 4: if (inFlush0) { 5: // Avoid re-entrance 6: return; 7: } 8: 9: // 内存队列为 null ,一般是 Channel 已经关闭,所以直接返回。 10: // 内存队列为空,无需 flush ,所以直接返回 11: final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer; 12: if (outboundBuffer == null || outboundBuffer.isEmpty()) { 13: return; 14: } 15: 16: // 标记正在 flush 中。 17: inFlush0 = true; 18: 19: // 若未激活,通知 flush 失败 20: // Mark all pending write requests as failure if the channel is inactive. 21: if (!isActive()) { 22: try { 23: if (isOpen()) { 24: outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true); 25: } else { 26: // Do not trigger channelWritabilityChanged because the channel is closed already. 27: outboundBuffer.failFlushed(FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); 28: } 29: } finally { 30: // 标记不在 flush 中。 31: inFlush0 = false; 32: } 33: return; 34: } 35: 36: // 执行真正的写入到对端 37: try { 38: doWrite(outboundBuffer); 39: } catch (Throwable t) { 40: // TODO 芋艿 细节 41: if (t instanceof IOException && config().isAutoClose()) { 42: /** 43: * Just call {@link #close(ChannelPromise, Throwable, boolean)} here which will take care of 44: * failing all flushed messages and also ensure the actual close of the underlying transport 45: * will happen before the promises are notified. 46: * 47: * This is needed as otherwise {@link #isActive()} , {@link #isOpen()} and {@link #isWritable()} 48: * may still return {@code true} even if the channel should be closed as result of the exception. 49: */ 50: close(voidPromise(), t, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); 51: } else { 52: try { 53: shutdownOutput(voidPromise(), t); 54: } catch (Throwable t2) { 55: close(voidPromise(), t2, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); 56: } 57: } 58: } finally { 59: // 标记不在 flush 中。 60: inFlush0 = false; 61: } 62: }
-
inFlush0
字段,是否正在 flush 中,即正在调用#flush0()
中。 -
第 3 至 7 行:正在 flush 中,所以直接返回。
-
第 9 至 14 行:
outboundBuffer == null
,内存队列为null
,一般是 Channel 已经关闭,所以直接返回。outboundBuffer.isEmpty()
,内存队列为空,无需 flush ,所以直接返回。
-
第 17 行:设置
inFlush0
为true
,表示正在 flush 中。 -
第 19 至 34 行:调用
#isActive()
方法,发现 Channel
未激活
,在根据 Channel
是否打开
,调用
ChannelOutboundBuffer#failFlushed(Throwable cause, boolean notify)
方法,通知 flush 失败
异常
。详细解析,见
「8.6 failFlushed」
。
- 第 29 至 33 行:最终,设置
inFlush0
为false
,表示结束 flush 操作,最后return
返回。
- 第 29 至 33 行:最终,设置
-
第 38 行:调用
AbstractChannel#doWrite(outboundBuffer)
方法,
执行真正的写入到对端
。详细解析,见
「7. NioSocketChannel」
。
- 第 39 至 57 行:TODO 芋艿 细节
- 第 58 至 61 行:同【第 29 至 33】的代码和目的。
-
-
实际上,AbstractNioUnsafe 重写了
#flush0()
方法,代码如下:@Override protected final void flush0() { // Flush immediately only when there's no pending flush. // If there's a pending flush operation, event loop will call forceFlush() later, // and thus there's no need to call it now. if (!isFlushPending()) { super.flush0(); } }
-
在执行父类 AbstractUnsafe 的
#flush0()
方法时,先调用AbstractNioUnsafe#isFlushPending()
判断,是否已经处于 flush 准备中。代码如下:private boolean isFlushPending() { SelectionKey selectionKey = selectionKey(); return selectionKey.isValid() // 合法 && (selectionKey.interestOps() & SelectionKey.OP_WRITE) != 0; // 对 SelectionKey.OP_WRITE 事件不感兴趣。 }
- 是不是有点懵 x ?在文初,我们提到:“所以在 Netty 的实现中,默认 Channel 是可写的,当写入失败的时候,再去注册
SelectionKey.OP_WRITE
事件。这意味着什么呢?在#flush()
方法中,如果写入数据到 Channel 失败,会通过注册SelectionKey.OP_WRITE
事件,然后在轮询到 Channel 可写 时,再“回调”#forceFlush()
方法”。 - 这就是这段代码的目的,如果处于对
SelectionKey.OP_WRITE
事件感兴趣,说明 Channel 此时是不可写的,那么调用父类 AbstractUnsafe 的#flush0()
方法,也没有意义,所以就不调用。 - 😈 逻辑上,略微有点复杂,胖友好好理解下。
- 是不是有点懵 x ?在文初,我们提到:“所以在 Netty 的实现中,默认 Channel 是可写的,当写入失败的时候,再去注册
-
7. NioSocketChannel
AbstractChannel#doWrite(ChannelOutboundBuffer in)
抽象方法,执行真正的写入到对端。定义在 AbstractChannel 抽象类中,代码如下:
/**
* Flush the content of the given buffer to the remote peer.
*/
protected abstract void doWrite(ChannelOutboundBuffer in) throws Exception;
NioSocketChannel 对该抽象方法,实现代码如下:
1: @Override
2: protected void doWrite(ChannelOutboundBuffer in) throws Exception {
3: SocketChannel ch = javaChannel();
4: // 获得自旋写入次数
5: int writeSpinCount = config().getWriteSpinCount();
6: do {
7: // 内存队列为空,结束循环,直接返回
8: if (in.isEmpty()) {
9: // 取消对 SelectionKey.OP_WRITE 的感兴趣
10: // All written so clear OP_WRITE
11: clearOpWrite();
12: // Directly return here so incompleteWrite(...) is not called.
13: return;
14: }
15:
16: // 获得每次写入的最大字节数
17: // Ensure the pending writes are made of ByteBufs only.
18: int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
19: // 从内存队列中,获得要写入的 ByteBuffer 数组
20: ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
21: // 写入的 ByteBuffer 数组的个数
22: int nioBufferCnt = in.nioBufferCount();
23:
24: // 写入 ByteBuffer 数组,到对端
25: // Always us nioBuffers() to workaround data-corruption.
26: // See https://github.com/netty/netty/issues/2761
27: switch (nioBufferCnt) {
28: case 0:
29: // 芋艿 TODO 1014 扣 doWrite0 的细节
30: // We have something else beside ByteBuffers to write so fallback to normal writes.
31: writeSpinCount -= doWrite0(in);
32: break;
33: case 1: {
34: // Only one ByteBuf so use non-gathering write
35: // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
36: // to check if the total size of all the buffers is non-zero.
37: ByteBuffer buffer = nioBuffers[0];
38: int attemptedBytes = buffer.remaining();
39: // 执行 NIO write 调用,写入单个 ByteBuffer 对象到对端
40: final int localWrittenBytes = ch.write(buffer);
41: // 写入字节小于等于 0 ,说明 NIO Channel 不可写,所以注册 SelectionKey.OP_WRITE ,等待 NIO Channel 可写,并返回以结束循环
42: if (localWrittenBytes <= 0) {
43: incompleteWrite(true);
44: return;
45: }
46: // TODO 芋艿 调整每次写入的最大字节数
47: adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
48: // 从内存队列中,移除已经写入的数据( 消息 )
49: in.removeBytes(localWrittenBytes);
50: // 写入次数减一
51: --writeSpinCount;
52: break;
53: }
54: default: {
55: // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
56: // to check if the total size of all the buffers is non-zero.
57: // We limit the max amount to int above so cast is safe
58: long attemptedBytes = in.nioBufferSize();
59: // 执行 NIO write 调用,写入多个 ByteBuffer 到对端
60: final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
61: // 写入字节小于等于 0 ,说明 NIO Channel 不可写,所以注册 SelectionKey.OP_WRITE ,等待 NIO Channel 可写,并返回以结束循环
62: if (localWrittenBytes <= 0) {
63: incompleteWrite(true);
64: return;
65: }
66: // TODO 芋艿 调整每次写入的最大字节数
67: // Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
68: adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes, maxBytesPerGatheringWrite);
69: // 从内存队列中,移除已经写入的数据( 消息 )
70: in.removeBytes(localWrittenBytes);
71: // 写入次数减一
72: --writeSpinCount;
73: break;
74: }
75: }
76: } while (writeSpinCount > 0); // 循环自旋写入
77:
78: // 内存队列中的数据未完全写入,说明 NIO Channel 不可写,所以注册 SelectionKey.OP_WRITE ,等待 NIO Channel 可写
79: incompleteWrite(writeSpinCount < 0);
80: }
-
第 3 行:调用
#javaChannel()
方法,获得 Java NIO 原生 SocketChannel 。 -
第 5 行:调用
ChannelConfig#getWriteSpinCount()
方法,获得自旋写入次数 N 。在【第 6 至 76 行】的代码,我们可以看到,不断自旋写入 N 次,直到完成写入结束。关于该配置项,官方注释如下:/** * Returns the maximum loop count for a write operation until {@link WritableByteChannel#write(ByteBuffer)} returns a non-zero value. * It is similar to what a spin lock is used for in concurrency programming. * It improves memory utilization and write throughput depending on the platform that JVM runs on. The default value is {@code 16}. */ int getWriteSpinCount();
- 默认值为
DefaultChannelConfig.writeSpinCount = 16
,可配置修改,一般不需要。
- 默认值为
-
第 6 至 76 行:不断自旋写入 N 次,直到完成写入结束。
-
第 8 行:调用
ChannelOutboundBuffer#isEmpty()
方法,内存队列为空,结束循环,直接返回。-
第 10 行:因为在 Channel 不可写的时候,会注册
SelectionKey.OP_WRITE
,等待 NIO Channel 可写。而后会”回调”#forceFlush()
方法,该方法内部也会调用#doWrite(ChannelOutboundBuffer in)
方法。所以在完成内部队列的数据向对端写入时候,需要调用#clearOpWrite()
方法,代码如下:protected final void clearOpWrite() { final SelectionKey key = selectionKey(); // Check first if the key is still valid as it may be canceled as part of the deregistration // from the EventLoop // See https://github.com/netty/netty/issues/2104 if (!key.isValid()) { // 合法 return; } final int interestOps = key.interestOps(); // 若注册了 SelectionKey.OP_WRITE ,则进行取消 if ((interestOps & SelectionKey.OP_WRITE) != 0) { key.interestOps(interestOps & ~SelectionKey.OP_WRITE); } }
- 😈 胖友看下代码注释。
-
-
第 18 行:调用
NioSocketChannelConfig#getMaxBytesPerGatheringWrite()
方法,获得每次写入的最大字节数。// TODO 芋艿 调整每次写入的最大字节数 -
第 20 行:调用
ChannelOutboundBuffer#nioBuffers(int maxCount, long maxBytes)
方法,从内存队列中,获得要写入的 ByteBuffer 数组。
注意
,如果内存队列中数据量很大,可能获得的仅仅是一部分数据。详细解析,见
「8.5 nioBuffers」
。
- 第 22 行:获得写入的 ByteBuffer 数组的个数。为什么不直接调用数组的
#length()
方法呢?因为返回的 ByteBuffer 数组是预先生成的数组缓存,存在不断重用的情况,所以不能直接使用#length()
方法,而是要调用ChannelOutboundBuffer#nioBufferCount()
方法,获得写入的 ByteBuffer 数组的个数。详细解析,见 「8.5 nioBuffers」 。 - 后续根据
nioBufferCnt
的数值,分成三种情况。
- 第 22 行:获得写入的 ByteBuffer 数组的个数。为什么不直接调用数组的
-
(づ ̄3 ̄)づ╭❤~ 第一种,
nioBufferCnt = 0
。 -
芋艿 TODO 1014 扣 doWrite0 的细节,应该是内部的数据为 FileRegion ,可以暂时无视,不影响本文理解。
-
(づ ̄3 ̄)づ╭❤~ 第二种,
nioBufferCnt = 1
。 -
第 40 行:调用 Java 原生
SocketChannel#write(ByteBuffer buffer)
方法,执行 NIO write 调用,写入单个 ByteBuffer 对象到对端。 -
第 42 行:写入字节小于等于 0 ,说明 NIO Channel 不可写,所以注册
SelectionKey.OP_WRITE
,等待 NIO Channel 可写,并返回以结束循环。-
第 43 行:调用
AbstractNioByteChannel#incompleteWrite(true)
方法,代码如下:protected final void incompleteWrite(boolean setOpWrite) { // Did not write completely. // true ,注册对 SelectionKey.OP_WRITE 事件感兴趣 if (setOpWrite) { setOpWrite(); // false ,取消对 SelectionKey.OP_WRITE 事件感兴趣 } else { // It is possible that we have set the write OP, woken up by NIO because the socket is writable, and then // use our write quantum. In this case we no longer want to set the write OP because the socket is still // writable (as far as we know). We will find out next time we attempt to write if the socket is writable // and set the write OP if necessary. clearOpWrite(); // Schedule flush again later so other tasks can be picked up in the meantime // 立即发起下一次 flush 任务 eventLoop().execute(flushTask); // <1> } }
-
setOpWrite
为true
,调用#setOpWrite()
方法,注册对SelectionKey.OP_WRITE
事件感兴趣。代码如下:protected final void setOpWrite() { final SelectionKey key = selectionKey(); // Check first if the key is still valid as it may be canceled as part of the deregistration // from the EventLoop // See https://github.com/netty/netty/issues/2104 if (!key.isValid()) { // 合法 return; } final int interestOps = key.interestOps(); // 注册 SelectionKey.OP_WRITE 事件的感兴趣 if ((interestOps & SelectionKey.OP_WRITE) == 0) { key.interestOps(interestOps | SelectionKey.OP_WRITE); } }
- 【第 43 行】的代码,就是这种情况。
-
setOpWrite
为false
,调用#clearOpWrite()
方法,取消对 SelectionKey.OP_WRITE 事件感兴趣。而后,在<1>
处,立即发起下一次 flush 任务。
-
-
-
第 47 行:TODO 芋艿 调整每次写入的最大字节数
-
第 49 行:调用
ChannelOutboundBuffer#removeBytes(long writtenBytes)
方法啊,从内存队列中,移除已经写入的数据( 消息 )。详细解析,见 「8.7 removeBytes」 。 -
第 51 行:写入次数减一。
-
(づ ̄3 ̄)づ╭❤~ 第三种,
nioBufferCnt > 1
。和【第二种】基本相同,差别是在于【第 60 行】的代码,调用 Java 原生SocketChannel#write(ByteBuffer[] srcs, int offset, int length)
方法,执行 NIO write 调用,写入多个 ByteBuffer 对象到对端。😈 批量一次性写入,提升性能。 -
=========== 结束 ===========
-
第 79 行:通过
writeSpinCount < 0
来判断,内存队列中的数据
是否
未完全写入。从目前逻辑看下来,笔者认为只会返回
true
,即内存队列中的数据未完全写入,说明 NIO Channel 不可写,所以注册
SelectionKey.OP_WRITE
,等待 NIO Channel 可写。因此,调用
#incompleteWrite(true)
方法。
- 举个例子,最后一次写入,Channel 的缓冲区还剩下 10 字节可写,内存队列中剩余 90 字节,那么可以成功写入 10 字节,剩余 80 字节。😈 也就说,此时 Channel 不可写落。
7.1 乱入
老艿艿:临时插入下 AbstractNioByteChannel 和 AbstractNioMessageChannel 实现类对
#doWrite(ChannelOutboundBuffer in)
方法的实现。不感兴趣的胖友,可以直接跳过。
AbstractNioByteChannel
虽然,AbstractNioByteChannel 实现了 #doWrite(ChannelOutboundBuffer in)
方法,但是子类 NioSocketChannel 又覆盖实现了该方法,所以可以忽略 AbstractNioByteChannel 的实现方法了。
那么为什么 AbstractNioByteChannel 会实现了 #doWrite(ChannelOutboundBuffer in)
方法呢?因为 NioUdtByteConnectorChannel 和 NioUdtByteRendezvousChannel 会使用到该方法。但是,这两个类已经被标记废弃,因为:
transport udt is deprecated and so the user knows it will be removed in the future.
- 来自 Netty 官方提交的注释说明。
AbstractNioMessageChannel
虽然,AbstractNioMessageChannel 实现了 #doWrite(ChannelOutboundBuffer in)
方法,但是对于 NioServerSocketChannel 来说,暂时没有意义,因为:
@Override
protected boolean doWriteMessage(Object msg, ChannelOutboundBuffer in) throws Exception {
throw new UnsupportedOperationException();
}
@Override
protected final Object filterOutboundMessage(Object msg) throws Exception {
throw new UnsupportedOperationException();
}
- 两个方法,都是直接抛出 UnsupportedOperationException 异常。
那么为什么 AbstractNioMessageChannel 会实现了 #doWrite(ChannelOutboundBuffer in)
方法呢?因为 NioDatagramChannel 和 NioSctpChannel 等等会使用到该方法。感兴趣的胖友,可以自己研究下。
8. ChannelOutboundBuffer
io.netty.channel.ChannelOutboundBuffer
,内存队列。
- 在 write 操作时,将数据写到 ChannelOutboundBuffer 中。
- 在 flush 操作时,将 ChannelOutboundBuffer 的数据写入到对端。
8.1 Entry
在 write 操作时,将数据写到 ChannelOutboundBuffer 中,都会产生一个 Entry 对象。代码如下:
/**
* Recycler 对象,用于重用 Entry 对象
*/
private static final Recycler<Entry> RECYCLER = new Recycler<Entry>() {
@Override
protected Entry newObject(Handle<Entry> handle) {
return new Entry(handle);
}
};
/**
* Recycler 处理器
*/
private final Handle<Entry> handle;
/**
* 下一条 Entry
*/
Entry next;
/**
* 消息(数据)
*/
Object msg;
/**
* {@link #msg} 转化的 NIO ByteBuffer 数组
*/
ByteBuffer[] bufs;
/**
* {@link #msg} 转化的 NIO ByteBuffer 对象
*/
ByteBuffer buf;
/**
* Promise 对象
*/
ChannelPromise promise;
/**
* 已写入的字节数
*/
long progress;
/**
* 长度,可读字节数数。
*/
long total;
/**
* 每个 Entry 预计占用的内存大小,计算方式为消息( {@link #msg} )的字节数 + Entry 对象自身占用内存的大小。
*/
int pendingSize;
/**
* {@link #msg} 转化的 NIO ByteBuffer 的数量。
*
* 当 = 1 时,使用 {@link #buf}
* 当 > 1 时,使用 {@link #bufs}
*/
int count = -1;
/**
* 是否取消写入对端
*/
boolean cancelled;
private Entry(Handle<Entry> handle) {
this.handle = handle;
}
-
RECYCLER
静态
属性,用于
重用
Entry 对象。
handle
属性,Recycler 处理器,用于回收 Entry 对象。
-
next
属性,指向下一条 Entry 。通过它,形成 ChannelOutboundBuffer 内部的链式存储每条写入数据的数据结构。 -
msg
属性,写入的消息( 数据 )。-
promise
属性,Promise 对象。当数据写入成功后,可以通过它回调通知结果。 -
total
属性,长度,可读字节数。通过#total(Object msg)
方法来计算。代码如下:private static long total(Object msg) { if (msg instanceof ByteBuf) { return ((ByteBuf) msg).readableBytes(); } if (msg instanceof FileRegion) { return ((FileRegion) msg).count(); } if (msg instanceof ByteBufHolder) { return ((ByteBufHolder) msg).content().readableBytes(); } return -1; }
- 从这个方法,我们看到,
msg
的类型,有 ByteBuf、FileRegion、ByteBufHolder 。
- 从这个方法,我们看到,
-
process
属性,已写入的字节数。详细解析,见 「8.7.1 process」 。
-
-
count
属性,
msg
属性转化的 NIO ByteBuffer 的数量。
bufs
属性,当count > 0
时使用,表示msg
属性转化的 NIO ByteBuffer 数组。buf
属性,当count = 0
时使用,表示msg
属性转化的 NIO ByteBuffer 对象。
-
cancelled
属性,是否取消写入对端。 -
pendingSize
属性,每个 Entry 预计占用的内存大小,计算方式为消息(msg
)的字节数 + Entry 对象自身占用内存的大小。
8.1.1 newInstance
#newInstance(Object msg, int size, long total, ChannelPromise promise)
静态方法,创建 Entry 对象。代码如下:
static Entry newInstance(Object msg, int size, long total, ChannelPromise promise) {
// 通过 Recycler 重用对象
Entry entry = RECYCLER.get();
// 初始化属性
entry.msg = msg;
entry.pendingSize = size + CHANNEL_OUTBOUND_BUFFER_ENTRY_OVERHEAD;
entry.total = total;
entry.promise = promise;
return entry;
}
- 通过 Recycler 来重用 Entry 对象。
8.1.2 recycle
#recycle()
方法,回收 Entry 对象,以为下次重用该对象。代码如下:
void recycle() {
// 重置属性
next = null;
bufs = null;
buf = null;
msg = null;
promise = null;
progress = 0;
total = 0;
pendingSize = 0;
count = -1;
cancelled = false;
// 回收 Entry 对象
handle.recycle(this);
}
8.1.3 recycleAndGetNext
#recycleAndGetNext()
方法,获得下一个 Entry 对象,并回收当前 Entry 对象。代码如下:
Entry recycleAndGetNext() {
// 获得下一个 Entry 对象
Entry next = this.next;
// 回收当前 Entry 对象
recycle();
// 返回下一个 Entry 对象
return next;
}
8.1.4 cancel
#cancel()
方法,标记 Entry 对象,取消写入到对端。在 ChannelOutboundBuffer 里,Entry 数组是通过链式的方式进行组织,而当某个 Entry 对象( 节点 )如果需要取消写入到对端,是通过设置 canceled = true
来标记删除。代码如下:
int cancel() {
if (!cancelled) {
// 标记取消
cancelled = true;
int pSize = pendingSize;
// 释放消息( 数据 )相关的资源
// release message and replace with an empty buffer
ReferenceCountUtil.safeRelease(msg);
// 设置为空 ByteBuf
msg = Unpooled.EMPTY_BUFFER;
// 置空属性
pendingSize = 0;
total = 0;
progress = 0;
bufs = null;
buf = null;
// 返回 pSize
return pSize;
}
return 0;
}
8.2 构造方法
/**
* Entry 对象自身占用内存的大小
*/
// Assuming a 64-bit JVM:
// - 16 bytes object header
// - 8 reference fields
// - 2 long fields
// - 2 int fields
// - 1 boolean field
// - padding
static final int CHANNEL_OUTBOUND_BUFFER_ENTRY_OVERHEAD = SystemPropertyUtil.getInt("io.netty.transport.outboundBufferEntrySizeOverhead", 96);
private static final InternalLogger logger = InternalLoggerFactory.getInstance(ChannelOutboundBuffer.class);
/**
* 线程对应的 ByteBuffer 数组缓存
*
* 每次调用 {@link #nioBuffers(int, long)} 会重新生成
*/
private static final FastThreadLocal<ByteBuffer[]> NIO_BUFFERS = new FastThreadLocal<ByteBuffer[]>() {
@Override
protected ByteBuffer[] initialValue() throws Exception {
return new ByteBuffer[1024];
}
};
/**
* Channel 对象
*/
private final Channel channel;
// Entry(flushedEntry) --> ... Entry(unflushedEntry) --> ... Entry(tailEntry)
//
/**
* 第一个( 开始 ) flush Entry
*/
// The Entry that is the first in the linked-list structure that was flushed
private Entry flushedEntry;
/**
* 第一个未 flush Entry
*/
// The Entry which is the first unflushed in the linked-list structure
private Entry unflushedEntry;
/**
* 尾 Entry
*/
// The Entry which represents the tail of the buffer
private Entry tailEntry;
/**
* 已 flush 但未写入对端的 Entry 数量
*
* {@link #addFlush()}
*
* The number of flushed entries that are not written yet
*/
private int flushed;
/**
* {@link #NIO_BUFFERS} 数组大小
*/
private int nioBufferCount;
/**
* {@link #NIO_BUFFERS} 字节数
*/
private long nioBufferSize;
/**
* 正在通知 flush 失败中
*/
private boolean inFail;
/**
* {@link #totalPendingSize} 的原子更新器
*/
private static final AtomicLongFieldUpdater<ChannelOutboundBuffer> TOTAL_PENDING_SIZE_UPDATER = AtomicLongFieldUpdater.newUpdater(ChannelOutboundBuffer.class, "totalPendingSize");
/**
* 总共等待 flush 到对端的内存大小,通过 {@link Entry#pendingSize} 来合计。
*/
@SuppressWarnings("UnusedDeclaration")
private volatile long totalPendingSize;
/**
* {@link #unwritable} 的原子更新器
*/
private static final AtomicIntegerFieldUpdater<ChannelOutboundBuffer> UNWRITABLE_UPDATER = AtomicIntegerFieldUpdater.newUpdater(ChannelOutboundBuffer.class, "unwritable");
/**
* 是否不可写
*/
@SuppressWarnings("UnusedDeclaration")
private volatile int unwritable;
/**
* 触发 Channel 可写的改变的任务
*/
private volatile Runnable fireChannelWritabilityChangedTask;
ChannelOutboundBuffer(AbstractChannel channel) {
this.channel = channel;
}
-
channel
属性,所属的 Channel 对象。 -
链式结构
flushedEntry
属性,第一个( 开始 ) flush Entry 。unflushedEntry
属性,第一个未 flush Entry 。tailEntry
属性,尾 Entry 。flushed
属性, 已 flush 但未写入对端的 Entry 数量。- 指向关系是
Entry(flushedEntry) --> ... Entry(unflushedEntry) --> ... Entry(tailEntry)
。这样看,可能有点抽象,下文源码解析详细理解。
-
NIO_BUFFERS
静态
属性,线程对应的 NIO ByteBuffer 数组缓存。在
AbstractChannel#doWrite(ChannelOutboundBuffer)
方法中,会调用
ChannelOutbound#nioBuffers(int maxCount, long maxBytes)
方法,初始化数组缓存。 详细解析,见
「8.6 nioBuffers」
中。
nioBufferCount
属性:NIO ByteBuffer 数组的数组大小。nioBufferSize
属性:NIO ByteBuffer 数组的字节大小。
-
inFail
属性,正在通知 flush 失败中。详细解析,见 「8.8 failFlushed」 中。 -
ChannelOutboundBuffer 写入控制相关。😈 详细解析,见
「10. ChannelOutboundBuffer」
。
-
unwritable
属性,是否不可写。
UNWRITABLE_UPDATER
静态属性,unwritable
属性的原子更新器。
-
totalPendingSize
属性,所有 Entry 预计占用的内存大小,通过
Entry.pendingSize
来合计。
TOTAL_PENDING_SIZE_UPDATER
静态属性,totalPendingSize
属性的原子更新器。
-
fireChannelWritabilityChangedTask
属性,触发 Channel 可写的改变的任务。 -
CHANNEL_OUTBOUND_BUFFER_ENTRY_OVERHEAD
静态
属性,每个 Entry 对象自身占用内存的大小。为什么占用的 96 字节呢?
- 16 bytes object header
,对象头,16 字节。- 8 reference fields
,实际是 6 个对象引用字段,6 * 8 = 48 字节。- 2 long fields
,2 个long
字段,2 * 8 = 16 字节。- 2 int fields
,1 个int
字段,2 * 4 = 8 字节。- 1 boolean field
,1 个boolean
字段,1 字节。padding
,补齐 8 字节的整数倍,因此 7 字节。- 因此,合计 96 字节( 64 位的 JVM 虚拟机,并且不考虑压缩 )。
- 如果不理解的胖友,可以看看 《JVM中 对象的内存布局 以及 实例分析》 。
-
8.3 addMessage
#addMessage(Object msg, int size, ChannelPromise promise)
方法,写入消息( 数据 )到内存队列。注意,promise
只有在真正完成写入到对端操作,才会进行通知。代码如下:
1: /**
2: * Add given message to this {@link ChannelOutboundBuffer}. The given {@link ChannelPromise} will be notified once
3: * the message was written.
4: */
5: public void addMessage(Object msg, int size, ChannelPromise promise) {
6: // 创建新 Entry 对象
7: Entry entry = Entry.newInstance(msg, size, total(msg), promise);
8: // 若 tailEntry 为空,将 flushedEntry 也设置为空。防御型编程,实际不会出现
9: if (tailEntry == null) {
10: flushedEntry = null;
11: // 若 tailEntry 非空,将原 tailEntry 指向新 Entry
12: } else {
13: Entry tail = tailEntry;
14: tail.next = entry;
15: }
16: // 更新 tailEntry 为新 Entry
17: tailEntry = entry;
18: // 若 unflushedEntry 为空,更新为新 Entry
19: if (unflushedEntry == null) {
20: unflushedEntry = entry;
21: }
22:
23: // 增加 totalPendingSize 计数
24: // increment pending bytes after adding message to the unflushed arrays.
25: // See https://github.com/netty/netty/issues/1619
26: incrementPendingOutboundBytes(entry.pendingSize, false);
27: }
-
第 7 行:调用
#newInstance(Object msg, int size, long total, ChannelPromise promise)
静态方法,创建 Entry 对象。 -
第 11 至 17 行:修改
尾
节点
tailEntry
为新的 Entry 节点。
- 第 8 至 10 行:若
tailEntry
为空,将flushedEntry
也设置为空。防御型编程,实际不会出现,胖友可以忽略。😈 当然,原因在#removeEntry(Entry e)
方法。 - 第 11 至 15 行:若
tailEntry
非空,将原tailEntry.next
指向新 Entry 。 - 第 17 行:更新原
tailEntry
为新 Entry 。
- 第 8 至 10 行:若
-
第 18 至 21 行:若
unflushedEntry
为空,则更新为新 Entry ,此时相当于首节点。 -
第 23 至 26 行:
#incrementPendingOutboundBytes(long size, ...)
方法,增加totalPendingSize
计数。详细解析,见 「10.1 incrementPendingOutboundBytes」 。
可能有点抽象,我们来看看基友【闪电侠】对这块的解析:
FROM 闪电侠 《netty 源码分析之 writeAndFlush 全解析》
初次调用
addMessage
之后,各个指针的情况为之 flush 操作.assets/1ff7a5d2b08b9e6160dd92e74e68145f.png)
fushedEntry
指向空,unFushedEntry
和tailEntry
都指向新加入的节点第二次调用
addMessage
之后,各个指针的情况为之 flush 操作.assets/1f939423f079ff491b90c8300e7ef3ea.png)
第 n 次调用
addMessage
之后,各个指针的情况为之 flush 操作.assets/c0077b0dc86ecf1b791a99eeb9664fc3.png)
可以看到,调用 n 次
addMessage
,flushedEntry
指针一直指向 NULL ,表示现在还未有节点需要写出到 Socket 缓冲区,而unFushedEntry
之后有 n 个节点,表示当前还有n个节点尚未写出到 Socket 缓冲区中去
8.4 addFlush
#addFlush()
方法,标记内存队列每个 Entry 对象,开始 flush 。代码如下:
老艿艿:总觉得这个方法名取的有点奇怪,胖友可以直接看英文注释。😈 我“翻译”不好,哈哈哈。
1: public void addFlush() {
2: // There is no need to process all entries if there was already a flush before and no new messages
3: // where added in the meantime.
4: //
5: // See https://github.com/netty/netty/issues/2577
6: Entry entry = unflushedEntry;
7: if (entry != null) {
8: // 若 flushedEntry 为空,赋值为 unflushedEntry ,用于记录第一个( 开始 ) flush 的 Entry 。
9: if (flushedEntry == null) {
10: // there is no flushedEntry yet, so start with the entry
11: flushedEntry = entry;
12: }
13: // 计算 flush 的数量,并设置每个 Entry 对应的 Promise 不可取消
14: do {
15: // 增加 flushed
16: flushed ++;
17: // 设置 Promise 不可取消
18: if (!entry.promise.setUncancellable()) { // 设置失败
19: // 减少 totalPending 计数
20: // Was cancelled so make sure we free up memory and notify about the freed bytes
21: int pending = entry.cancel();
22: decrementPendingOutboundBytes(pending, false, true);
23: }
24: // 获得下一个 Entry
25: entry = entry.next;
26: } while (entry != null);
27:
28: // 设置 unflushedEntry 为空,表示所有都 flush
29: // All flushed so reset unflushedEntry
30: unflushedEntry = null;
31: }
32: }
-
第 6 至 7 行:若
unflushedEntry
为空,说明每个 Entry 对象已经“标记” flush 。注意,“标记”的方式,不是通过 Entry 对象有一个flushed
字段,而是flushedEntry
属性,指向第一个( 开始 ) flush 的 Entry ,而unflushedEntry
置空。 -
第 8 至 12 行:若
flushedEntry
为空,赋值为unflushedEntry
,用于记录第一个( 开始 ) flush 的 Entry 。 -
第 13 至 26 行:计算需要 flush 的 Entry 数量,并设置每个 Entry 对应的 Promise
不可取消
。
- 第 18 至 23 行:
#decrementPendingOutboundBytes(long size, ...)
方法,减少totalPendingSize
计数。
- 第 18 至 23 行:
-
第 30 行:设置
unflushedEntry
为空。
可能有点抽象,我们来看看基友【闪电侠】对这块的解析:
FROM 闪电侠 《netty 源码分析之 writeAndFlush 全解析》
可以结合前面的图来看,首先拿到
unflushedEntry
指针,然后将flushedEntry
指向unflushedEntry
所指向的节点,调用完毕之后,三个指针的情况如下所示之 flush 操作.assets/ecb3df153a3df70464b524838b559232.png)
老艿艿:再次切回到老艿艿的频道,呼呼。
当一次需要从内存队列写到对端的数据量非常大,那么可能写着写着 Channel 的缓存区不够,导致 Channel 此时不可写。但是,这一轮 #addFlush(...)
标记的 Entry 对象并没有都写到对端。例如,准备写到对端的 Entry 的数量是 flush = 10
个,结果只写了 6 个,那么就剩下 flush = 4
。
但是的但是,#addMessage(...)
可能又不断写入新的消息( 数据 )到 ChannelOutboundBuffer 中。那会出现什么情况呢?会“分”成两段:
<1>
段:自节点flushedEntry
开始的flush
个 Entry 节点,需要写入到对端。<2>
段:自节点unFlushedEntry
开始的 Entry 节点,需要调用#addFlush()
方法,添加到<1>
段中。
这就很好的解释两个事情:
- 为什么
#addFlush()
方法,命名是以"add"
开头。 - ChannelOutboundBuffer 的链式结构,为什么不是
head
和tail
两个节点,而是flushedEntry
、unFlushedEntry
、flushedEntry
三个节点。在此处,请允许老艿艿爆个粗口:真他 x 的巧妙啊。
8.4.1 size
#size()
方法,获得 flushed
属性。代码如下:
/**
* Returns the number of flushed messages in this {@link ChannelOutboundBuffer}.
*/
public int size() {
return flushed;
}
8.4.2 isEmpty
#isEmpty()
方法,是否为空。代码如下:
/**
* Returns {@code true} if there are flushed messages in this {@link ChannelOutboundBuffer} or {@code false}
* otherwise.
*/
public boolean isEmpty() {
return flushed == 0;
}
8.5 current
#current()
方法,获得当前要写入对端的消息( 数据 )。代码如下:
/**
* Return the current message to write or {@code null} if nothing was flushed before and so is ready to be written.
*/
public Object current() {
Entry entry = flushedEntry;
if (entry == null) {
return null;
}
return entry.msg;
}
- 即,返回的是
flushedEntry
的消息( 数据 )。
8.6 nioBuffers
#nioBuffers(int maxCount, long maxBytes)
方法,获得当前要写入到对端的 NIO ByteBuffer 数组,并且获得的数组大小不得超过 maxCount
,字节数不得超过 maxBytes
。我们知道,在写入数据到 ChannelOutboundBuffer 时,一般使用的是 Netty ByteBuf 对象,但是写到 NIO SocketChannel 时,则必须使用 NIO ByteBuffer 对象,因此才有了这个方法。考虑到性能,这个方法里会使用到“缓存”,所以看起来会比较绕一丢丢。OK,开始看代码落:
/**
* Returns an array of direct NIO buffers if the currently pending messages are made of {@link ByteBuf} only.
* {@link #nioBufferCount()} and {@link #nioBufferSize()} will return the number of NIO buffers in the returned
* array and the total number of readable bytes of the NIO buffers respectively.
* <p>
* Note that the returned array is reused and thus should not escape
* {@link AbstractChannel#doWrite(ChannelOutboundBuffer)}.
* Refer to {@link NioSocketChannel#doWrite(ChannelOutboundBuffer)} for an example.
* </p>
* @param maxCount The maximum amount of buffers that will be added to the return value.
* @param maxBytes A hint toward the maximum number of bytes to include as part of the return value. Note that this
* value maybe exceeded because we make a best effort to include at least 1 {@link ByteBuffer}
* in the return value to ensure write progress is made.
*/
1: public ByteBuffer[] nioBuffers(int maxCount, long maxBytes) {
2: assert maxCount > 0;
3: assert maxBytes > 0;
4: long nioBufferSize = 0;
5: int nioBufferCount = 0;
6: // 获得当前线程的 NIO ByteBuffer 数组缓存。
7: final InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get();
8: ByteBuffer[] nioBuffers = NIO_BUFFERS.get(threadLocalMap);
9: // 从 flushedEntry 节点,开始向下遍历
10: Entry entry = flushedEntry;
11: while (isFlushedEntry(entry) && entry.msg instanceof ByteBuf) {
12: // 若 Entry 节点已经取消,忽略。
13: if (!entry.cancelled) {
14: ByteBuf buf = (ByteBuf) entry.msg;
15: // 获得消息( 数据 )开始读取位置
16: final int readerIndex = buf.readerIndex();
17: // 获得消息( 数据 )可读取的字节数
18: final int readableBytes = buf.writerIndex() - readerIndex;
19:
20: // 若无可读取的数据,忽略。
21: if (readableBytes > 0) {
22: // 前半段,可读取的字节数,不能超过 maxBytes
23: // 后半段,如果第一条数据,就已经超过 maxBytes ,那么只能“强行”读取,否则会出现一直无法读取的情况。
24: if (maxBytes - readableBytes < nioBufferSize && nioBufferCount != 0) {
25: // If the nioBufferSize + readableBytes will overflow maxBytes, and there is at least one entry
26: // we stop populate the ByteBuffer array. This is done for 2 reasons:
27: // 1. bsd/osx don't allow to write more bytes then Integer.MAX_VALUE with one writev(...) call
28: // and so will return 'EINVAL', which will raise an IOException. On Linux it may work depending
29: // on the architecture and kernel but to be safe we also enforce the limit here.
30: // 2. There is no sense in putting more data in the array than is likely to be accepted by the
31: // OS.
32: //
33: // See also:
34: // - https://www.freebsd.org/cgi/man.cgi?query=write&sektion=2
35: // - http://linux.die.net/man/2/writev
36: break;
37: }
38: // 增加 nioBufferSize
39: nioBufferSize += readableBytes;
40: // 初始 Entry 节点的 NIO ByteBuffer 数量
41: int count = entry.count;
42: if (count == -1) {
43: //noinspection ConstantValueVariableUse
44: entry.count = count = buf.nioBufferCount();
45: }
46: // 如果超过 NIO ByteBuffer 数组的大小,进行扩容。
47: int neededSpace = min(maxCount, nioBufferCount + count);
48: if (neededSpace > nioBuffers.length) {
49: nioBuffers = expandNioBufferArray(nioBuffers, neededSpace, nioBufferCount);
50: NIO_BUFFERS.set(threadLocalMap, nioBuffers);
51: }
52: // 初始化 Entry 节点的 buf / bufs 属性
53: if (count == 1) {
54: ByteBuffer nioBuf = entry.buf;
55: if (nioBuf == null) {
56: // cache ByteBuffer as it may need to create a new ByteBuffer instance if its a
57: // derived buffer
58: entry.buf = nioBuf = buf.internalNioBuffer(readerIndex, readableBytes);
59: }
60: nioBuffers[nioBufferCount++] = nioBuf;
61: } else {
62: ByteBuffer[] nioBufs = entry.bufs;
63: if (nioBufs == null) {
64: // cached ByteBuffers as they may be expensive to create in terms
65: // of Object allocation
66: entry.bufs = nioBufs = buf.nioBuffers();
67: }
68: for (int i = 0; i < nioBufs.length && nioBufferCount < maxCount; ++i) {
69: ByteBuffer nioBuf = nioBufs[i];
70: if (nioBuf == null) {
71: break;
72: } else if (!nioBuf.hasRemaining()) {
73: continue;
74: }
75: nioBuffers[nioBufferCount++] = nioBuf;
76: }
77: }
78:
79: // 到达 maxCount 上限,结束循环。老艿艿的想法,这里最好改成 nioBufferCount >= maxCount ,是有可能会超过的
80: if (nioBufferCount == maxCount) {
81: break;
82: }
83: }
84: }
85:
86: // 下一个 Entry节点
87: entry = entry.next;
88: }
89:
90: // 设置 nioBufferCount 和 nioBufferSize 属性
91: this.nioBufferCount = nioBufferCount;
92: this.nioBufferSize = nioBufferSize;
93:
94: return nioBuffers;
95: }
-
第 4 至 5 行:初始
nioBufferSize
、nioBufferCount
计数。 -
第 6 至 8 行:获得当前线程的 NIO ByteBuffer 数组缓存。
- 关于 InternalThreadLocalMap 和 FastThreadLocal ,胖友可以暂时忽略,后续的文章,详细解析。
-
第 10 至 11 行:从
flushedEntry
节点,开始向下遍历。-
调用
#isFlushedEntry(Entry entry)
方法,判断是否为已经“标记”为 flush 的 Entry 节点。代码如下:private boolean isFlushedEntry(Entry e) { return e != null && e != unflushedEntry; }
e != unflushedEntry
,就是我们在 「8.4 addFlush」 最后部分讲的,思考下。
-
entry.msg instanceof ByteBuf
,消息( 数据 )类型为 ByteBuf 。实际上,msg
的类型也可能是 FileRegion 。如果 ChannelOutboundBuffer 里的消息都是 FileRegion 类型,那就会导致这个方法返回为空 NIO ByteBuffer 数组。
-
-
第 13 行:若 Entry 节点已经取消,忽略。
-
第 14 至 18 行:获得消息( 数据 )开始读取位置和可读取的字节数。
- 第 21 行:若无可读取的数据,忽略。
-
第 22 至 37 行:
- 前半段
maxBytes - readableBytes < nioBufferSize
,当前 ByteBuf 可读取的字节数,不能超过maxBytes
。这个比较好理解。 - 后半段
nioBufferCount != 0
,如果第一条数据,就已经超过maxBytes
,那么只能“强行”读取,否则会出现一直无法读取的情况( 因为不能跳过这条 😈 )。
- 前半段
-
第 39 行:增加
nioBufferSize
。 -
第 40 至 45 行:调用
ByteBuf#nioBufferCount()
方法,初始 Entry 节点的
count
属性( NIO ByteBuffer 数量)。
- 使用
count == -1
的原因是,Entry.count
未初始化时,为-1
。
- 使用
-
第 47 至 51 行:如果超过 NIO ByteBuffer 数组的大小,调用
#expandNioBufferArray(ByteBuffer[] array, int neededSpace, int size)
方法,进行扩容。详细解析,见 「8.6.1 expandNioBufferArray」 。 -
第 52 至 77 行:初始 Entry 节点的
buf
或
bufs
属性。
- 当
count = 1
时,调用ByteBuf#internalNioBuffer(readerIndex, readableBytes)
方法,获得 NIO ByteBuffer 对象。 - 当
count > 1
时,调用ByteBuf#nioBuffers()
方法,获得 NIO ByteBuffer 数组。 - 通过
nioBuffers[nioBufferCount++] = nioBuf
,将 NIO ByteBuffer 赋值到结果数组nioBuffers
中,并增加nioBufferCount
。
- 当
-
第 79 至 82 行:到达
maxCount
上限,结束循环。老艿艿的想法,这里最好改成nioBufferCount >= maxCount
,是有可能会超过的。 -
第 87 行:下一个 Entry 节点。
-
第 90 至 92 行:设置 ChannelOutboundBuffer 的
nioBufferCount
和nioBufferSize
属性。
8.6.1 expandNioBufferArray
#expandNioBufferArray(ByteBuffer[] array, int neededSpace, int size)
方法,进行 NIO ByteBuff 数组的扩容。代码如下:
private static ByteBuffer[] expandNioBufferArray(ByteBuffer[] array, int neededSpace, int size) {
// 计算扩容后的数组的大小,按照 2 倍计算
int newCapacity = array.length;
do {
// double capacity until it is big enough
// See https://github.com/netty/netty/issues/1890
newCapacity <<= 1;
if (newCapacity < 0) {
throw new IllegalStateException();
}
} while (neededSpace > newCapacity);
// 创建新的 ByteBuffer 数组
ByteBuffer[] newArray = new ByteBuffer[newCapacity];
// 复制老的 ByteBuffer 数组到新的 ByteBuffer 数组中
System.arraycopy(array, 0, newArray, 0, size);
return newArray;
}
- 代码比较简单,胖友自己看下注释。
8.6.2 nioBufferCount
#nioBufferCount()
方法,返回 nioBufferCount
属性。代码如下:
/**
* Returns the number of {@link ByteBuffer} that can be written out of the {@link ByteBuffer} array that was
* obtained via {@link #nioBuffers()}. This method <strong>MUST</strong> be called after {@link #nioBuffers()}
* was called.
*/
public int nioBufferCount() {
return nioBufferCount;
}
8.6.3 nioBufferSize
#nioBufferSize()
方法,返回 nioBufferSize
属性。代码如下:
/**
* Returns the number of bytes that can be written out of the {@link ByteBuffer} array that was
* obtained via {@link #nioBuffers()}. This method <strong>MUST</strong> be called after {@link #nioBuffers()}
* was called.
*/
public long nioBufferSize() {
return nioBufferSize;
}
8.7 removeBytes
#removeBytes(long writtenBytes)
方法,移除已经写入 writtenBytes
字节对应的 Entry 对象 / 对象们。代码如下:
1: public void removeBytes(long writtenBytes) {
2: // 循环移除
3: for (;;) {
4: // 获得当前消息( 数据 )
5: Object msg = current();
6: if (!(msg instanceof ByteBuf)) {
7: assert writtenBytes == 0;
8: break;
9: }
10:
11: final ByteBuf buf = (ByteBuf) msg;
12: // 获得消息( 数据 )开始读取位置
13: final int readerIndex = buf.readerIndex();
14: // 获得消息( 数据 )可读取的字节数
15: final int readableBytes = buf.writerIndex() - readerIndex;
16:
17: // 当前消息( 数据 )已被写完到对端
18: if (readableBytes <= writtenBytes) {
19: if (writtenBytes != 0) {
20: // 处理当前消息的 Entry 的写入进度
21: progress(readableBytes);
22: // 减小 writtenBytes
23: writtenBytes -= readableBytes;
24: }
25: // 移除当前消息对应的 Entry
26: remove();
27: // 当前消息( 数据 )未被写完到对端
28: } else { // readableBytes > writtenBytes
29: if (writtenBytes != 0) {
30: // 标记当前消息的 ByteBuf 的读取位置
31: buf.readerIndex(readerIndex + (int) writtenBytes);
32: // 处理当前消息的 Entry 的写入进度
33: progress(writtenBytes);
34: }
35: break;
36: }
37: }
38:
39: // 清除 NIO ByteBuff 数组的缓存
40: clearNioBuffers();
41: }
-
第 3 行:
循环
,移除已经写入
writtenBytes
字节对应的 Entry 对象。
- 第 5 行:调用
#current()
方法,获得当前消息( 数据 )。 - 第 12 至 15 行:获得消息( 数据 )开始读取位置和可读取的字节数。
<1>
当前消息( 数据 )已被写完到对端。- 第 21 行:调用
#progress(long amount)
方法,处理当前消息的 Entry 的写入进度。详细解析,见 「8.7.1 progress」 。 - 第 23 行:减小
writtenBytes
。 - 第 26 行:调用
#remove()
方法,移除当前消息对应的 Entry 对象。详细解析,见 「8.7.2 remove」 。 <2》
当前消息( 数据 )未被写完到对端。- 第 31 行:调用
ByteBuf#readerIndex(readerIndex)
方法,标记当前消息的 ByteBuf 的读取位置。 - 第 33 行:调用
#progress(long amount)
方法,处理当前消息的 Entry 的写入进度。 - 第 35 行:
break
,结束循环。
- 第 5 行:调用
-
第 40 行:调用
#clearNioBuffers()
方法,清除 NIO ByteBuff 数组的缓存。详细解析,见 「8.7.4 clearNioBuffers」 。
8.7.1 progress
#progress(long amount)
方法,处理当前消息的 Entry 的写入进度,主要是通知 Promise 消息写入的进度。代码如下:
/**
* Notify the {@link ChannelPromise} of the current message about writing progress.
*/
1: public void progress(long amount) {
2: Entry e = flushedEntry;
3: assert e != null;
4: ChannelPromise p = e.promise;
5: if (p instanceof ChannelProgressivePromise) {
6: // 设置 Entry 对象的 progress 属性
7: long progress = e.progress + amount;
8: e.progress = progress;
9: // 通知 ChannelProgressivePromise 进度
10: ((ChannelProgressivePromise) p).tryProgress(progress, e.total);
11: }
12: }
- 第 5 行:若
promise
的类型是 ChannelProgressivePromise 类型。 - 第 6 至 8 行:设置 Entry 对象的
progress
属性。 - 第 10 行:调用
ChannelProgressivePromise#tryProgress(progress, total)
方法,通知 ChannelProgressivePromise 进度。
8.7.2 remove
#remove()
方法,移除当前消息对应的 Entry 对象,并 Promise 通知成功。代码如下:
1: public boolean remove() {
2: Entry e = flushedEntry;
3: if (e == null) {
4: // 清除 NIO ByteBuff 数组的缓存
5: clearNioBuffers();
6: return false;
7: }
8: Object msg = e.msg;
9:
10: ChannelPromise promise = e.promise;
11: int size = e.pendingSize;
12:
13: // 移除指定 Entry 对象
14: removeEntry(e);
15:
16: if (!e.cancelled) {
17: // 释放消息( 数据 )相关的资源
18: // only release message, notify and decrement if it was not canceled before.
19: ReferenceCountUtil.safeRelease(msg);
20: // 通知 Promise 执行成功
21: safeSuccess(promise);
22: // 减少 totalPending 计数
23: decrementPendingOutboundBytes(size, false, true);
24: }
25:
26: // 回收 Entry 对象
27: // recycle the entry
28: e.recycle();
29:
30: return true;
31: }
-
第 14 行:调用
#removeEntry(Entry e)
方法,移除指定 Entry 对象。详细解析,见 「8.7.3 removeEntry」 。 -
第 16 行:若 Entry 已取消,则忽略。
-
第 19 行:
ReferenceCountUtil#safeRelease(msg)
方法,释放消息( 数据 )相关的资源。 -
第 21 行:【重要】调用
#safeSuccess(promise)
方法,通知 Promise 执行成功。此处才是,真正触发Channel#write(...)
或Channel#writeAndFlush(...)
方法,返回的 Promise 的通知。#safeSuccess(promise)
方法的代码如下:private static void safeSuccess(ChannelPromise promise) { // Only log if the given promise is not of type VoidChannelPromise as trySuccess(...) is expected to return // false. PromiseNotificationUtil.trySuccess(promise, null, promise instanceof VoidChannelPromise ? null : logger); }
-
第 23 行:
#decrementPendingOutboundBytes(long size, ...)
方法,减少totalPendingSize
计数。 -
第 28 行:调用
Entry#recycle()
方法,回收 Entry 对象。
8.7.3 removeEntry
#removeEntry(Entry e)
方法,移除指定 Entry 对象。代码如下:
1: private void removeEntry(Entry e) {
2: // 已移除完已 flush 的 Entry 节点,置空 flushedEntry、tailEntry、unflushedEntry 。
3: if (-- flushed == 0) {
4: // processed everything
5: flushedEntry = null;
6: if (e == tailEntry) {
7: tailEntry = null;
8: unflushedEntry = null;
9: }
10: // 未移除完已 flush 的 Entry 节点,flushedEntry 指向下一个 Entry 对象
11: } else {
12: flushedEntry = e.next;
13: }
14: }
- 第 3 至 9 行:已移除完已 flush 的所有 Entry 节点,置空
flushedEntry
、tailEntry
、unflushedEntry
。 - 第 10 至 13 行:未移除完已 flush 的所有 Entry 节点,
flushedEntry
指向下一个 Entry 对象。
8.7.4 clearNioBuffers
#clearNioBuffers()
方法,清除 NIO ByteBuff 数组的缓存。代码如下:
// Clear all ByteBuffer from the array so these can be GC'ed.
// See https://github.com/netty/netty/issues/3837
private void clearNioBuffers() {
int count = nioBufferCount;
if (count > 0) {
// 归零 nioBufferCount 。老艿艿觉得,应该把 nioBufferSize 也归零
nioBufferCount = 0;
// 置空 NIO ByteBuf 数组
Arrays.fill(NIO_BUFFERS.get(), 0, count, null);
}
}
- 代码比较简单,胖友自己看注释。主要目的是 help gc 。
8.8 failFlushed
#failFlushed(Throwable cause, boolean notify)
方法,写入数据到对端失败,进行后续的处理,详细看代码。代码如下:
1: void failFlushed(Throwable cause, boolean notify) {
2: // 正在通知 flush 失败中,直接返回
3: // Make sure that this method does not reenter. A listener added to the current promise can be notified by the
4: // current thread in the tryFailure() call of the loop below, and the listener can trigger another fail() call
5: // indirectly (usually by closing the channel.)
6: //
7: // See https://github.com/netty/netty/issues/1501
8: if (inFail) {
9: return;
10: }
11:
12: try {
13: // 标记正在通知 flush 失败中
14: inFail = true;
15: // 循环,移除所有已 flush 的 Entry 节点们
16: for (;;) {
17: if (!remove0(cause, notify)) {
18: break;
19: }
20: }
21: } finally {
22: // 标记不在通知 flush 失败中
23: inFail = false;
24: }
25: }
- 第 2 至 10 行:正在通知 flush 失败中,直接返回。
- 第 14 行:标记正在通知 flush 失败中,即
inFail = true
。 - 第 15 至 20 行:循环,调用
#remove0(Throwable cause, boolean notifyWritability)
方法,移除所有已 flush 的 Entry 节点们。详细解析,见 「8. remove0」 中。 - 第 21 至 24 行:标记不在通知 flush 失败中,即
inFail = false
。
8.8.1 remove0
#remove0(Throwable cause, boolean notifyWritability)
方法,移除当前消息对应的 Entry 对象,并 Promise 通知异常。代码如下:
1: private boolean remove0(Throwable cause, boolean notifyWritability) {
2: Entry e = flushedEntry;
3: // 所有 flush 的 Entry 节点,都已经写到对端
4: if (e == null) {
5: // // 清除 NIO ByteBuff 数组的缓存
6: clearNioBuffers();
7: return false; // 没有后续的 flush 的 Entry 节点
8: }
9: Object msg = e.msg;
10:
11: ChannelPromise promise = e.promise;
12: int size = e.pendingSize;
13:
14: removeEntry(e);
15:
16: if (!e.cancelled) {
17: // 释放消息( 数据 )相关的资源
18: // only release message, fail and decrement if it was not canceled before.
19: ReferenceCountUtil.safeRelease(msg);
20: // 通知 Promise 执行失败
21: safeFail(promise, cause);
22: // 减少 totalPendingSize 计数
23: decrementPendingOutboundBytes(size, false, notifyWritability);
24: }
25:
26: // 回收 Entry 对象
27: // recycle the entry
28: e.recycle();
29:
30: return true; // 还有后续的 flush 的 Entry 节点
31: }
-
第 3 至 8 行:若所有 flush 的 Entry 节点,都已经写到对端,则调用
#clearNioBuffers()
方法,清除 NIO ByteBuff 数组的缓存。 -
第 14 行:调用
#removeEntry(Entry e)
方法,移除指定 Entry 对象。详细解析,见 「8.7.3 removeEntry」 。 -
第 16 行:若 Entry 已取消,则忽略。
-
第 19 行:
ReferenceCountUtil#safeRelease(msg)
方法,释放消息( 数据 )相关的资源。 -
第 21 行:【重要】调用
#safeFail(promise)
方法,通知 Promise 执行失败。此处才是,真正触发Channel#write(...)
或Channel#writeAndFlush(...)
方法,返回的 Promise 的通知。#safeFail(promise)
方法的代码如下:private static void safeFail(ChannelPromise promise, Throwable cause) { // Only log if the given promise is not of type VoidChannelPromise as tryFailure(...) is expected to return // false. PromiseNotificationUtil.tryFailure(promise, cause, promise instanceof VoidChannelPromise ? null : logger); }
-
第 23 行:调用
#decrementPendingOutboundBytes(long size, ...)
方法,减少totalPendingSize
计数。 -
第 28 行:调用
Entry#recycle()
方法,回收 Entry 对象。
8.9 forEachFlushedMessage
TODO 1015 forEachFlushedMessage 在 netty-transport-native-poll
和 netty-transport-native-kqueue
中使用,在后续的文章解析。
8.10 close
#close(...)
方法,关闭 ChannelOutboundBuffer ,进行后续的处理,详细看代码。代码如下:
void close(ClosedChannelException cause) {
close(cause, false);
}
1: void close(final Throwable cause, final boolean allowChannelOpen) {
2: // 正在通知 flush 失败中
3: if (inFail) {
4: // 提交 EventLoop 的线程中,执行关闭
5: channel.eventLoop().execute(new Runnable() {
6: @Override
7: public void run() {
8: close(cause, allowChannelOpen);
9: }
10: });
11: // 返回
12: return;
13: }
14:
15: // 标记正在通知 flush 失败中
16: inFail = true;
17:
18: if (!allowChannelOpen && channel.isOpen()) {
19: throw new IllegalStateException("close() must be invoked after the channel is closed.");
20: }
21:
22: if (!isEmpty()) {
23: throw new IllegalStateException("close() must be invoked after all flushed writes are handled.");
24: }
25:
26: // Release all unflushed messages.
27: try {
28: // 从 unflushedEntry 节点,开始向下遍历
29: Entry e = unflushedEntry;
30: while (e != null) {
31: // 减少 totalPendingSize
32: // Just decrease; do not trigger any events via decrementPendingOutboundBytes()
33: int size = e.pendingSize;
34: TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, -size);
35:
36: if (!e.cancelled) {
37: // 释放消息( 数据 )相关的资源
38: ReferenceCountUtil.safeRelease(e.msg);
39: // 通知 Promise 执行失败
40: safeFail(e.promise, cause);
41: }
42: // 回收当前节点,并获得下一个 Entry 节点
43: e = e.recycleAndGetNext();
44: }
45: } finally {
46: // 标记在在通知 flush 失败中
47: inFail = false;
48: }
49:
50: // 清除 NIO ByteBuff 数组的缓存。
51: clearNioBuffers();
52: }
-
第 3 行:正在通知 flush 失败中:
- 第 5 至 10 行: 提交 EventLoop 的线程中,执行关闭。
- 第 12 行:
return
返回。
-
第 16 行:标记正在通知 flush 失败中,即
inFail = true
。 -
第 28 至 30 行:从
unflushedEntry
节点,开始向下遍历。
- 第 31 至 34 行:减少
totalPendingSize
计数。 - 第 36 行:若 Entry 已取消,则忽略。
- 第 38 行:调用
ReferenceCountUtil#safeRelease(msg)
方法,释放消息( 数据 )相关的资源。 - 第 40 行:【重要】调用
#safeFail(promise)
方法,通知 Promise 执行失败。此处才是,真正触发Channel#write(...)
或Channel#writeAndFlush(...)
方法,返回的 Promise 的通知。 - 第 43 行:调用
Entry#recycleAndGetNext()
方法,回收当前节点,并获得下一个 Entry 节点。
- 第 31 至 34 行:减少
-
第 45 至 48 行:标记不在通知 flush 失败中,即
inFail = false
。 -
第 51 行:调用
#clearNioBuffers()
方法,清除 NIO ByteBuff 数组的缓存。
9. NioEventLoop
在上文 「7. NioSocketChannel」 中,在写入到 Channel 到对端,若 TCP 数据发送缓冲区已满,这将导致 Channel 不写可,此时会注册对该 Channel 的 SelectionKey.OP_WRITE
事件感兴趣。从而实现,再在 Channel 可写后,进行强制 flush 。这块的逻辑,在 NioEventLoop#processSelectedKey(SelectionKey k, AbstractNioChannel ch)
中实现,代码如下:
// OP_WRITE 事件就绪
// Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
// Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
// 向 Channel 写入数据
ch.unsafe().forceFlush();
}
-
通过 Selector 轮询到 Channel 的
OP_WRITE
就绪时,调用AbstractNioUnsafe#forceFlush()
方法,强制 flush 。代码如下:// AbstractNioUnsafe.java @Override public final void forceFlush() { // directly call super.flush0() to force a flush now super.flush0(); }
- 后续的逻辑,又回到 「6. AbstractUnsafe」 小节的
#flush0()
流程。 - 在完成强制 flush 之后,会取消对
SelectionKey.OP_WRITE
事件的感兴趣。
- 后续的逻辑,又回到 「6. AbstractUnsafe」 小节的
9.1 如何模拟
-
配置服务端 ServerBootstrap 的启动参数如下:
.childOption(ChannelOption.SO_SNDBUF, 5) // Socket 参数,TCP 数据发送缓冲区大小。
-
telnet
到启动的服务端,发送相对长的命令,例如"abcdefghijklmnopqrstuvw11321321321nhdkslk"
。
10. ChannelOutboundBuffer 写入控制
当我们不断调用 #addMessage(Object msg, int size, ChannelPromise promise)
方法,添加消息到 ChannelOutboundBuffer 内存队列中,如果不及时 flush 写到对端( 例如程序一直未调用 Channel#flush()
方法,或者对端接收数据比较慢导致 Channel 不可写 ),可能会导致 OOM 内存溢出。所以,在 ChannelOutboundBuffer 使用 totalPendingSize
属性,存储所有 Entry 预计占用的内存大小( pendingSize
)。
- 在
totalPendingSize
大于高水位阀值时(ChannelConfig.writeBufferHighWaterMark
,默认值为 64 KB ),关闭写开关(unwritable
)。详细解析,见 「10.1 incrementPendingOutboundBytes」 。 - 在
totalPendingSize
小于低水位阀值时(ChannelConfig.writeBufferLowWaterMark
,默认值为 32 KB ),打开写开关(unwritable
)。详细解析,见 「10.2 decrementPendingOutboundBytes」 。
该功能,对应 Github 提交为 《Take memory overhead of ChannelOutboundBuffer / PendingWriteQueue into account》 。
10.1 incrementPendingOutboundBytes
#incrementPendingOutboundBytes(long size, ...)
方法,增加 totalPendingSize
计数。代码如下:
1: /**
2: * Increment the pending bytes which will be written at some point.
3: * This method is thread-safe!
4: */
5: void incrementPendingOutboundBytes(long size) {
6: incrementPendingOutboundBytes(size, true);
7: }
8:
9: private void incrementPendingOutboundBytes(long size, boolean invokeLater) {
10: if (size == 0) {
11: return;
12: }
13:
14: // 增加 totalPendingSize 计数
15: long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size);
16: // totalPendingSize 大于高水位阀值时,设置为不可写
17: if (newWriteBufferSize > channel.config().getWriteBufferHighWaterMark()) {
18: setUnwritable(invokeLater);
19: }
20: }
-
第 15 行:增加
totalPendingSize
计数。 -
第 16 至 19 行:
totalPendingSize
大于高水位阀值时,调用#setUnwritable(boolean invokeLater)
方法,设置为不可写。代码如下:1: private void setUnwritable(boolean invokeLater) { 2: for (;;) { 3: final int oldValue = unwritable; 4: // 或位操作,修改第 0 位 bits 为 1 5: final int newValue = oldValue | 1; 6: // CAS 设置 unwritable 为新值 7: if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) { 8: // 若之前可写,现在不可写,触发 Channel WritabilityChanged 事件到 pipeline 中。 9: if (oldValue == 0 && newValue != 0) { 10: fireChannelWritabilityChanged(invokeLater); 11: } 12: break; 13: } 14: } 15: }
- 第 2 行:
for
循环,直到 CAS 修改成功 - 第 5 行:或位操作,修改第 0 位 bits 为 1 。😈 比较神奇的是,
unwritable
的类型不是boolean
,而是int
类型。通过每个 bits ,来表示哪种类型不可写。感兴趣的胖友,可以看看io.netty.handler.traffic.AbstractTrafficShapingHandler
,使用了第 1、2、3 bits 。 - 第 7 行:CAS 设置
unwritable
为新值。 - 第 8 至 11 行:若之前可写,现在不可写,调用
#fireChannelWritabilityChanged(boolean invokeLater)
方法,触发 Channel WritabilityChanged 事件到 pipeline 中。详细解析,见 「10.3 fireChannelWritabilityChanged」 。
- 第 2 行:
10.1.1 bytesBeforeUnwritable
#bytesBeforeUnwritable()
方法,获得距离不可写还有多少字节数。代码如下:
public long bytesBeforeUnwritable() {
long bytes = channel.config().getWriteBufferHighWaterMark() - totalPendingSize;
// If bytes is negative we know we are not writable, but if bytes is non-negative we have to check writability.
// Note that totalPendingSize and isWritable() use different volatile variables that are not synchronized
// together. totalPendingSize will be updated before isWritable().
if (bytes > 0) {
return isWritable() ? bytes : 0; // 判断 #isWritable() 的原因是,可能已经被设置不可写
}
return 0;
}
- 基于高水位阀值来判断。
10.2 decrementPendingOutboundBytes
#decrementPendingOutboundBytes(long size, ...)
方法,减少 totalPendingSize
计数。代码如下:
1: /**
2: * Decrement the pending bytes which will be written at some point.
3: * This method is thread-safe!
4: */
5: void decrementPendingOutboundBytes(long size) {
6: decrementPendingOutboundBytes(size, true, true);
7: }
8:
9: private void decrementPendingOutboundBytes(long size, boolean invokeLater, boolean notifyWritability) {
10: if (size == 0) {
11: return;
12: }
13:
14: // 减少 totalPendingSize 计数
15: long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, -size);
16: // totalPendingSize 小于低水位阀值时,设置为可写
17: if (notifyWritability && newWriteBufferSize < channel.config().getWriteBufferLowWaterMark()) {
18: setWritable(invokeLater);
19: }
20: }
-
第 15 行:减少
totalPendingSize
计数。 -
第 16 至 19 行:
totalPendingSize
小于低水位阀值时,调用#setWritable(boolean invokeLater)
方法,设置为可写。代码如下:1: private void setWritable(boolean invokeLater) { 2: for (;;) { 3: final int oldValue = unwritable; 4: // 并位操作,修改第 0 位 bits 为 0 5: final int newValue = oldValue & ~1; 6: // CAS 设置 unwritable 为新值 7: if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) { 8: // 若之前不可写,现在可写,触发 Channel WritabilityChanged 事件到 pipeline 中。 9: if (oldValue != 0 && newValue == 0) { 10: fireChannelWritabilityChanged(invokeLater); 11: } 12: break; 13: } 14: } 15: }
- 第 2 行:
for
循环,直到 CAS 修改成功 - 第 5 行:并位操作,修改第 0 位 bits 为 0 。
- 第 7 行:CAS 设置
unwritable
为新值。 - 第 8 至 11 行:若之前可写,现在不可写,调用
#fireChannelWritabilityChanged(boolean invokeLater)
方法,触发 Channel WritabilityChanged 事件到 pipeline 中。详细解析,见 「10.3 fireChannelWritabilityChanged」 。
- 第 2 行:
10.2.1 bytesBeforeWritable
#bytesBeforeWritable()
方法,获得距离可写还要多少字节数。代码如下:
/**
* Get how many bytes must be drained from the underlying buffer until {@link #isWritable()} returns {@code true}.
* This quantity will always be non-negative. If {@link #isWritable()} is {@code true} then 0.
*/
public long bytesBeforeWritable() {
long bytes = totalPendingSize - channel.config().getWriteBufferLowWaterMark();
// If bytes is negative we know we are writable, but if bytes is non-negative we have to check writability.
// Note that totalPendingSize and isWritable() use different volatile variables that are not synchronized
// together. totalPendingSize will be updated before isWritable().
if (bytes > 0) {
return isWritable() ? 0 : bytes; // 判断 #isWritable() 的原因是,可能已经被设置不可写
}
return 0;
}
- 基于低水位阀值来判断。
10.3 fireChannelWritabilityChanged
#fireChannelWritabilityChanged(boolean invokeLater)
方法,触发 Channel WritabilityChanged 事件到 pipeline 中。代码如下:
private void fireChannelWritabilityChanged(boolean invokeLater) {
final ChannelPipeline pipeline = channel.pipeline();
// 延迟执行,即提交 EventLoop 中触发 Channel WritabilityChanged 事件到 pipeline 中
if (invokeLater) {
Runnable task = fireChannelWritabilityChangedTask;
if (task == null) {
fireChannelWritabilityChangedTask = task = new Runnable() {
@Override
public void run() {
pipeline.fireChannelWritabilityChanged();
}
};
}
channel.eventLoop().execute(task);
// 直接触发 Channel WritabilityChanged 事件到 pipeline 中
} else {
pipeline.fireChannelWritabilityChanged();
}
}
-
根据
invokeLater
的值,分成两种方式,调用ChannelPipeline#fireChannelWritabilityChanged()
方法,触发 Channel WritabilityChanged 事件到 pipeline 中。具体,胖友看下代码注释。 -
后续的流程,就是 《精尽 Netty 源码解析 —— ChannelPipeline(五)之 Inbound 事件的传播》 。
-
通过 Channel WritabilityChanged 事件,配合
io.netty.handler.stream.ChunkedWriteHandler
处理器,实现 ChannelOutboundBuffer 写入的控制,避免 OOM 。ChunkedWriteHandler 的具体代码实现,我们在后续的文章,详细解析。
- 所以,有一点要注意,ChannelOutboundBuffer 的
unwritable
属性,仅仅作为一个是否不可写的开关,具体需要配合响应的 ChannelHandler 处理器,才能实现“不可写”的功能。
- 所以,有一点要注意,ChannelOutboundBuffer 的
10.4 isWritable
#isWritable()
方法,是否可写。代码如下:
/**
* Returns {@code true} if and only if {@linkplain #totalPendingWriteBytes() the total number of pending bytes} did
* not exceed the write watermark of the {@link Channel} and
* no {@linkplain #setUserDefinedWritability(int, boolean) user-defined writability flag} has been set to
* {@code false}.
*/
public boolean isWritable() {
return unwritable == 0;
}
- 如果
unwritable
大于 0 ,则表示不可写。😈 一定要注意!!!
10.4.1 getUserDefinedWritability
#getUserDefinedWritability(int index)
方法,获得指定 bits 是否可写。代码如下:
/**
* Returns {@code true} if and only if the user-defined writability flag at the specified index is set to
* {@code true}.
*/
public boolean getUserDefinedWritability(int index) {
return (unwritable & writabilityMask(index)) == 0;
}
private static int writabilityMask(int index) {
// 不能 < 1 ,因为第 0 bits 为 ChannelOutboundBuffer 自己使用
// 不能 > 31 ,因为超过 int 的 bits 范围
if (index < 1 || index > 31) {
throw new IllegalArgumentException("index: " + index + " (expected: 1~31)");
}
return 1 << index;
}
- 为什么方法名字上会带有
"UserDefined"
呢?因为index
不能使用 0 ,表示只允许使用用户定义("UserDefined"
) bits 位,即[1, 31]
。
10.4.2 setUserDefinedWritability
#setUserDefinedWritability(int index, boolean writable)
方法,设置指定 bits 是否可写。代码如下:
/**
* Sets a user-defined writability flag at the specified index.
*/
public void setUserDefinedWritability(int index, boolean writable) {
// 设置可写
if (writable) {
setUserDefinedWritability(index);
// 设置不可写
} else {
clearUserDefinedWritability(index);
}
}
private void setUserDefinedWritability(int index) {
final int mask = ~writabilityMask(index);
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue & mask;
// CAS 设置 unwritable 为新值
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
// 若之前不可写,现在可写,触发 Channel WritabilityChanged 事件到 pipeline 中。
if (oldValue != 0 && newValue == 0) {
fireChannelWritabilityChanged(true);
}
break;
}
}
}
private void clearUserDefinedWritability(int index) {
final int mask = writabilityMask(index);
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue | mask;
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
// 若之前可写,现在不可写,触发 Channel WritabilityChanged 事件到 pipeline 中。
if (oldValue == 0 && newValue != 0) {
fireChannelWritabilityChanged(true);
}
break;
}
}
}
- 代码比较简单,胖友自己看噢。
666. 彩蛋
比想象中,长的多的多的一篇文章。总的来说,绝大部分细节,都已经扣到,美滋滋。如果有解释不够清晰或错误的细节,一起多多沟通呀。
写完这篇,我简直疯了。。。。
推荐阅读文章: