928 lines
30 KiB
Markdown
928 lines
30 KiB
Markdown
# 精尽 Netty 源码解析 —— EventLoop(二)之 EventLoopGroup
|
||
|
||
# 1. 概述
|
||
|
||
在 [《精尽 Netty 源码分析 —— Netty 简介(二)之核心组件》](http://svip.iocoder.cn/Netty/intro-2/?self) 中,对 EventLoopGroup 和 EventLoop 做了定义,我们再来回顾下:
|
||
|
||
> - Channel 为Netty 网络操作抽象类,EventLoop 负责处理注册到其上的 Channel 处理 I/O 操作,两者配合参与 I/O 操作。
|
||
> - EventLoopGroup 是一个 EventLoop 的分组,它可以获取到一个或者多个 EventLoop 对象,因此它提供了迭代出 EventLoop 对象的方法。
|
||
|
||
在 [《精尽 Netty 源码分析 —— 启动》](https://svip.iocoder.cn/Netty/EventLoop-2-EventLoopGroup/#) 中,我们特别熟悉的一段代码就是:
|
||
|
||
- `new NioEventLoopGroup()` ,创建一个 EventLoopGroup 对象。
|
||
- `EventLoopGroup#register(Channel channel)` ,将 Channel 注册到 EventLoopGroup 上。
|
||
|
||
那么,本文我们分享 EventLoopGroup 的具体代码实现,来一探究竟。
|
||
|
||
# 2. 类结构图
|
||
|
||
EventLoopGroup 的整体类结构如下图:
|
||
|
||
[之 EventLoopGroup.assets/01.png)](http://static.iocoder.cn/images/Netty/2018_05_04/01.png)EventLoopGroup 类图
|
||
|
||
- 红框部分,为 EventLoopGroup 相关的类关系。其他部分,为 EventLoop 相关的类关系。
|
||
- 因为我们实际上使用的是 **NioEventLoopGroup** 和 NioEventLoop ,所以笔者省略了其它相关的类,例如 OioEventLoopGroup、EmbeddedEventLoop 等等。
|
||
|
||
下面,我们逐层看看每个接口和类的实现代码。
|
||
|
||
# 3. EventExecutorGroup
|
||
|
||
`io.netty.util.concurrent.EventExecutorGroup` ,实现 Iterable、ScheduledExecutorService 接口,EventExecutor ( 事件执行器 )的分组接口。代码如下:
|
||
|
||
```
|
||
// ========== 自定义接口 ==========
|
||
|
||
boolean isShuttingDown();
|
||
|
||
// 优雅关闭
|
||
Future<?> shutdownGracefully();
|
||
Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit);
|
||
|
||
Future<?> terminationFuture();
|
||
|
||
// 选择一个 EventExecutor 对象
|
||
EventExecutor next();
|
||
|
||
// ========== 实现自 Iterable 接口 ==========
|
||
|
||
@Override
|
||
Iterator<EventExecutor> iterator();
|
||
|
||
// ========== 实现自 ExecutorService 接口 ==========
|
||
|
||
@Override
|
||
Future<?> submit(Runnable task);
|
||
@Override
|
||
<T> Future<T> submit(Runnable task, T result);
|
||
@Override
|
||
<T> Future<T> submit(Callable<T> task);
|
||
|
||
@Override
|
||
@Deprecated
|
||
void shutdown();
|
||
@Override
|
||
@Deprecated
|
||
List<Runnable> shutdownNow();
|
||
|
||
// ========== 实现自 ScheduledExecutorService 接口 ==========
|
||
|
||
@Override
|
||
ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
|
||
@Override
|
||
<V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
|
||
@Override
|
||
ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);
|
||
@Override
|
||
ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit);
|
||
```
|
||
|
||
- 每个接口的方法的意思比较好理解,笔者就不一一赘述了。
|
||
- 比较特殊的是,接口方法返回类型为 Future 不是 Java 原生的 `java.util.concurrent.Future` ,而是 Netty 自己实现的 Future 接口。详细解析,见后续文章。
|
||
- EventExecutorGroup 自身不执行任务,而是将任务 `#submit(...)` 或 `#schedule(...)` 给自己管理的 EventExecutor 的分组。至于提交给哪一个 EventExecutor ,一般是通过 `#next()` 方法,选择一个 EventExecutor 。
|
||
|
||
# 4. AbstractEventExecutorGroup
|
||
|
||
`io.netty.util.concurrent.AbstractEventExecutorGroup` ,实现 EventExecutorGroup 接口,EventExecutor ( 事件执行器 )的分组抽象类。
|
||
|
||
## 4.1 submit
|
||
|
||
`#submit(...)` 方法,提交**一个**普通任务到 EventExecutor 中。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public Future<?> submit(Runnable task) {
|
||
return next().submit(task);
|
||
}
|
||
|
||
@Override
|
||
public <T> Future<T> submit(Runnable task, T result) {
|
||
return next().submit(task, result);
|
||
}
|
||
|
||
@Override
|
||
public <T> Future<T> submit(Callable<T> task) {
|
||
return next().submit(task);
|
||
}
|
||
```
|
||
|
||
- 提交的 EventExecutor ,通过 `#next()` 方法选择。
|
||
|
||
## 4.2 schedule
|
||
|
||
`#schedule(...)` 方法,提交**一个**定时任务到 EventExecutor 中。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
|
||
return next().schedule(command, delay, unit);
|
||
}
|
||
|
||
@Override
|
||
public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
|
||
return next().schedule(callable, delay, unit);
|
||
}
|
||
|
||
@Override
|
||
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
|
||
return next().scheduleAtFixedRate(command, initialDelay, period, unit);
|
||
}
|
||
|
||
@Override
|
||
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
|
||
return next().scheduleWithFixedDelay(command, initialDelay, delay, unit);
|
||
}
|
||
```
|
||
|
||
- 提交的 EventExecutor ,通过 `#next()` 方法选择。
|
||
|
||
## 4.3 execute
|
||
|
||
`#execute(...)` 方法,在 EventExecutor 中执行**一个**普通任务。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public void execute(Runnable command) {
|
||
next().execute(command);
|
||
}
|
||
```
|
||
|
||
- 执行的 EventExecutor ,通过 `#next()` 方法选择。
|
||
- 看起来 `#execute(...)` 和 `#submit(...)` 方法有几分相似,具体的差异,由 EventExecutor 的实现决定。
|
||
|
||
## 4.4 invokeAll
|
||
|
||
`#invokeAll(...)` 方法,在 EventExecutor 中执行**多个**普通任务。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public <T> List<java.util.concurrent.Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException {
|
||
return next().invokeAll(tasks);
|
||
}
|
||
|
||
@Override
|
||
public <T> List<java.util.concurrent.Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException {
|
||
return next().invokeAll(tasks, timeout, unit);
|
||
}
|
||
```
|
||
|
||
- 执行的 EventExecutor ,通过 `#next()` 方法选择。并且,多个任务使用同一个 EventExecutor 。
|
||
|
||
## 4.5 invokeAny
|
||
|
||
`#invokeAll(...)` 方法,在 EventExecutor 中执行**多个**普通任务,有**一个**执行完成即可。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException {
|
||
return next().invokeAny(tasks);
|
||
}
|
||
|
||
@Override
|
||
public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
|
||
return next().invokeAny(tasks, timeout, unit);
|
||
}
|
||
```
|
||
|
||
- 执行的 EventExecutor ,通过 `#next()` 方法选择。并且,多个任务使用同一个 EventExecutor 。
|
||
|
||
## 4.6 shutdown
|
||
|
||
`#shutdown(...)` 方法,关闭 EventExecutorGroup 。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public Future<?> shutdownGracefully() {
|
||
return shutdownGracefully(DEFAULT_SHUTDOWN_QUIET_PERIOD /* 2 */, DEFAULT_SHUTDOWN_TIMEOUT /* 15 */, TimeUnit.SECONDS);
|
||
}
|
||
|
||
@Override
|
||
@Deprecated
|
||
public List<Runnable> shutdownNow() {
|
||
shutdown();
|
||
return Collections.emptyList();
|
||
}
|
||
|
||
@Override
|
||
@Deprecated
|
||
public abstract void shutdown();
|
||
```
|
||
|
||
- 具体的 `#shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit)` 和 `#shutdown()` 方法,由子类实现。
|
||
|
||
# 5. MultithreadEventExecutorGroup
|
||
|
||
`io.netty.util.concurrent.MultithreadEventExecutorGroup` ,继承 AbstractEventExecutorGroup 抽象类,**基于多线程**的 EventExecutor ( 事件执行器 )的分组抽象类。
|
||
|
||
## 5.1 构造方法
|
||
|
||
```
|
||
/**
|
||
* EventExecutor 数组
|
||
*/
|
||
private final EventExecutor[] children;
|
||
/**
|
||
* 不可变( 只读 )的 EventExecutor 数组
|
||
*
|
||
* @see #MultithreadEventExecutorGroup(int, Executor, EventExecutorChooserFactory, Object...)
|
||
*/
|
||
private final Set<EventExecutor> readonlyChildren;
|
||
/**
|
||
* 已终止的 EventExecutor 数量
|
||
*/
|
||
private final AtomicInteger terminatedChildren = new AtomicInteger();
|
||
/**
|
||
* 用于终止 EventExecutor 的异步 Future
|
||
*/
|
||
private final Promise<?> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
|
||
/**
|
||
* EventExecutor 选择器
|
||
*/
|
||
private final EventExecutorChooserFactory.EventExecutorChooser chooser;
|
||
|
||
protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
|
||
this(nThreads, threadFactory == null ? null : new ThreadPerTaskExecutor(threadFactory), args);
|
||
}
|
||
|
||
protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
|
||
this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
|
||
}
|
||
|
||
1: protected MultithreadEventExecutorGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory, Object... args) {
|
||
2: if (nThreads <= 0) {
|
||
3: throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
|
||
4: }
|
||
5:
|
||
6: // 创建执行器
|
||
7: if (executor == null) {
|
||
8: executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
|
||
9: }
|
||
10:
|
||
11: // 创建 EventExecutor 数组
|
||
12: children = new EventExecutor[nThreads];
|
||
13:
|
||
14: for (int i = 0; i < nThreads; i ++) {
|
||
15: boolean success = false; // 是否创建成功
|
||
16: try {
|
||
17: // 创建 EventExecutor 对象
|
||
18: children[i] = newChild(executor, args);
|
||
19: // 标记创建成功
|
||
20: success = true;
|
||
21: } catch (Exception e) {
|
||
22: // 创建失败,抛出 IllegalStateException 异常
|
||
23: // TODO: Think about if this is a good exception type
|
||
24: throw new IllegalStateException("failed to create a child event loop", e);
|
||
25: } finally {
|
||
26: // 创建失败,关闭所有已创建的 EventExecutor
|
||
27: if (!success) {
|
||
28: // 关闭所有已创建的 EventExecutor
|
||
29: for (int j = 0; j < i; j ++) {
|
||
30: children[j].shutdownGracefully();
|
||
31: }
|
||
32: // 确保所有已创建的 EventExecutor 已关闭
|
||
33: for (int j = 0; j < i; j ++) {
|
||
34: EventExecutor e = children[j];
|
||
35: try {
|
||
36: while (!e.isTerminated()) {
|
||
37: e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
|
||
38: }
|
||
39: } catch (InterruptedException interrupted) {
|
||
40: // Let the caller handle the interruption.
|
||
41: Thread.currentThread().interrupt();
|
||
42: break;
|
||
43: }
|
||
44: }
|
||
45: }
|
||
46: }
|
||
47: }
|
||
48:
|
||
49: // 创建 EventExecutor 选择器
|
||
50: chooser = chooserFactory.newChooser(children);
|
||
51:
|
||
52: // 创建监听器,用于 EventExecutor 终止时的监听
|
||
53: final FutureListener<Object> terminationListener = new FutureListener<Object>() {
|
||
54:
|
||
55: @Override
|
||
56: public void operationComplete(Future<Object> future) throws Exception {
|
||
57: if (terminatedChildren.incrementAndGet() == children.length) { // 全部关闭
|
||
58: terminationFuture.setSuccess(null); // 设置结果,并通知监听器们。
|
||
59: }
|
||
60: }
|
||
61:
|
||
62: };
|
||
63: // 设置监听器到每个 EventExecutor 上
|
||
64: for (EventExecutor e: children) {
|
||
65: e.terminationFuture().addListener(terminationListener);
|
||
66: }
|
||
67:
|
||
68: // 创建不可变( 只读 )的 EventExecutor 数组
|
||
69: Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
|
||
70: Collections.addAll(childrenSet, children);
|
||
71: readonlyChildren = Collections.unmodifiableSet(childrenSet);
|
||
72: }
|
||
```
|
||
|
||
- 每个属性的定义,胖友直接看代码注释。
|
||
|
||
- 方法参数
|
||
|
||
|
||
|
||
```
|
||
executor
|
||
```
|
||
|
||
|
||
|
||
,执行器。详细解析,见
|
||
|
||
|
||
|
||
「5.2 ThreadPerTaskExecutor」
|
||
|
||
|
||
|
||
。
|
||
|
||
- 第 6 至 9 行:若 `executor` 为空,则创建执行器。
|
||
|
||
- 第 12 行:创建 EventExecutor 数组。
|
||
|
||
- 第 18 行:调用 `#newChild(Executor executor, Object... args)` 方法,创建 EventExecutor 对象,然后设置到数组中。
|
||
- 第 21 至 24 行:创建失败,抛出 IllegalStateException 异常。
|
||
- 第 25 至 45 行:创建失败,关闭所有已创建的 EventExecutor 。
|
||
|
||
- 第 50 行:调用 `EventExecutorChooserFactory#newChooser(EventExecutor[] executors)` 方法,创建 EventExecutor 选择器。详细解析,见 [「5.3 EventExecutorChooserFactory」](https://svip.iocoder.cn/Netty/EventLoop-2-EventLoopGroup/#) 。
|
||
|
||
- 第 52 至 62 行:创建监听器,用于 EventExecutor 终止时的监听。
|
||
|
||
- 第 55 至 60 行:回调的具体逻辑是,当所有 EventExecutor 都终止完成时,通过调用 `Future#setSuccess(V result)` 方法,通知监听器们。至于为什么设置的值是 `null` ,因为监听器们不关注具体的结果。
|
||
- 第 63 至 66 行:设置监听器到每个 EventExecutor 上。
|
||
|
||
- 第 68 至 71 行:创建不可变( 只读 )的 EventExecutor 数组。
|
||
|
||
## 5.2 ThreadPerTaskExecutor
|
||
|
||
`io.netty.util.concurrent.ThreadPerTaskExecutor` ,实现 Executor 接口,每个任务一个线程的执行器实现类。代码如下:
|
||
|
||
```
|
||
public final class ThreadPerTaskExecutor implements Executor {
|
||
|
||
/**
|
||
* 线程工厂对象
|
||
*/
|
||
private final ThreadFactory threadFactory;
|
||
|
||
public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
|
||
if (threadFactory == null) {
|
||
throw new NullPointerException("threadFactory");
|
||
}
|
||
this.threadFactory = threadFactory;
|
||
}
|
||
|
||
/**
|
||
* 执行任务
|
||
*
|
||
* @param command 任务
|
||
*/
|
||
@Override
|
||
public void execute(Runnable command) {
|
||
threadFactory.newThread(command).start();
|
||
}
|
||
|
||
}
|
||
```
|
||
|
||
- `threadFactory` 属性,线程工厂对象。Netty 实现自定义的 ThreadFactory 类,为 `io.netty.util.concurrent.DefaultThreadFactory` 。关于 DefaultThreadFactory 比较简单,胖友可以自己看看。
|
||
- `#execute(Runnable command)` 方法,通过 `ThreadFactory#newThread(Runnable)` 方法,创建一个 Thread ,然后调用 `Thread#start()` 方法,**启动线程执行任务**。
|
||
|
||
## 5.3 EventExecutorChooserFactory
|
||
|
||
`io.netty.util.concurrent.EventExecutorChooserFactory` ,EventExecutorChooser 工厂接口。代码如下:
|
||
|
||
```
|
||
public interface EventExecutorChooserFactory {
|
||
|
||
/**
|
||
* 创建一个 EventExecutorChooser 对象
|
||
*
|
||
* Returns a new {@link EventExecutorChooser}.
|
||
*/
|
||
EventExecutorChooser newChooser(EventExecutor[] executors);
|
||
|
||
/**
|
||
* EventExecutor 选择器接口
|
||
*
|
||
* Chooses the next {@link EventExecutor} to use.
|
||
*/
|
||
@UnstableApi
|
||
interface EventExecutorChooser {
|
||
|
||
/**
|
||
* 选择下一个 EventExecutor 对象
|
||
*
|
||
* Returns the new {@link EventExecutor} to use.
|
||
*/
|
||
EventExecutor next();
|
||
|
||
}
|
||
|
||
}
|
||
```
|
||
|
||
- `#newChooser(EventExecutor[] executors)` 方法,创建一个 EventExecutorChooser 对象。
|
||
- EventExecutorChooser 接口,EventExecutor 选择器接口。
|
||
- `#next()` 方法,选择下一个 EventExecutor 对象。
|
||
|
||
### 5.3.1 DefaultEventExecutorChooserFactory
|
||
|
||
`io.netty.util.concurrent.DefaultEventExecutorChooserFactory` ,实现 EventExecutorChooserFactory 接口,默认 EventExecutorChooser 工厂实现类。代码如下
|
||
|
||
```
|
||
/**
|
||
* 单例
|
||
*/
|
||
public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory();
|
||
|
||
private DefaultEventExecutorChooserFactory() { }
|
||
|
||
@SuppressWarnings("unchecked")
|
||
@Override
|
||
public EventExecutorChooser newChooser(EventExecutor[] executors) {
|
||
if (isPowerOfTwo(executors.length)) { // 是否为 2 的幂次方
|
||
return new PowerOfTwoEventExecutorChooser(executors);
|
||
} else {
|
||
return new GenericEventExecutorChooser(executors);
|
||
}
|
||
}
|
||
|
||
private static boolean isPowerOfTwo(int val) {
|
||
return (val & -val) == val;
|
||
}
|
||
```
|
||
|
||
- `INSTANCE` **静态**属性,单例。
|
||
|
||
- ```
|
||
#newChooser(EventExecutor[] executors)
|
||
```
|
||
|
||
|
||
|
||
方法,调用
|
||
|
||
|
||
|
||
```
|
||
#isPowerOfTwo(int val)
|
||
```
|
||
|
||
|
||
|
||
方法,判断 EventExecutor 数组的大小是否为 2 的幂次方。
|
||
|
||
- 若是,创建 PowerOfTwoEventExecutorChooser 对象。详细解析,见 [「5.3.3 PowerOfTwoEventExecutorChooser」](https://svip.iocoder.cn/Netty/EventLoop-2-EventLoopGroup/#) 。
|
||
- 若否,创建 GenericEventExecutorChooser 对象。详细解析,见 [「5.3.2 GenericEventExecutorChooser」](https://svip.iocoder.cn/Netty/EventLoop-2-EventLoopGroup/#) 。
|
||
|
||
- ```
|
||
#isPowerOfTwo(int val)
|
||
```
|
||
|
||
|
||
|
||
方法,为什么
|
||
|
||
|
||
|
||
```
|
||
(val & -val) == val
|
||
```
|
||
|
||
|
||
|
||
可以判断数字是否为 2 的幂次方呢?
|
||
|
||
- 我们以 8 来举个例子。
|
||
- 8 的二进制为 `1000` 。
|
||
- -8 的二进制使用补码表示。所以,先求反生成反码为 `0111` ,然后加一生成补码为 `1000` 。
|
||
- 8 和 -8 并操作后,还是 8 。
|
||
- 实际上,以 2 为幂次方的数字,都是最高位为 1 ,剩余位为 0 ,所以对应的负数,求完补码还是自己。
|
||
- 胖友也可以自己试试非 2 的幂次方数字的效果。
|
||
|
||
### 5.3.2 GenericEventExecutorChooser
|
||
|
||
GenericEventExecutorChooser 实现 EventExecutorChooser 接口,通用的 EventExecutor 选择器实现类。代码如下:
|
||
|
||
> GenericEventExecutorChooser 内嵌在 DefaultEventExecutorChooserFactory 类中。
|
||
|
||
```
|
||
private static final class GenericEventExecutorChooser implements EventExecutorChooser {
|
||
|
||
/**
|
||
* 自增序列
|
||
*/
|
||
private final AtomicInteger idx = new AtomicInteger();
|
||
/**
|
||
* EventExecutor 数组
|
||
*/
|
||
private final EventExecutor[] executors;
|
||
|
||
GenericEventExecutorChooser(EventExecutor[] executors) {
|
||
this.executors = executors;
|
||
}
|
||
|
||
@Override
|
||
public EventExecutor next() {
|
||
return executors[Math.abs(idx.getAndIncrement() % executors.length)];
|
||
}
|
||
|
||
}
|
||
```
|
||
|
||
- 实现比较**简单**,使用 `idx` 自增,并使用 EventExecutor 数组的大小来取余。
|
||
|
||
### 5.3.3 PowerOfTwoEventExecutorChooser
|
||
|
||
PowerOfTwoEventExecutorChooser 实现 EventExecutorChooser 接口,基于 EventExecutor 数组的大小为 2 的幂次方的 EventExecutor 选择器实现类。这是一个优化的实现,代码如下:
|
||
|
||
> PowerOfTwoEventExecutorChooser 内嵌在 DefaultEventExecutorChooserFactory 类中。
|
||
|
||
```
|
||
private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
|
||
|
||
/**
|
||
* 自增序列
|
||
*/
|
||
private final AtomicInteger idx = new AtomicInteger();
|
||
/**
|
||
* EventExecutor 数组
|
||
*/
|
||
private final EventExecutor[] executors;
|
||
|
||
PowerOfTwoEventExecutorChooser(EventExecutor[] executors) {
|
||
this.executors = executors;
|
||
}
|
||
|
||
@Override
|
||
public EventExecutor next() {
|
||
return executors[idx.getAndIncrement() & executors.length - 1];
|
||
}
|
||
|
||
}
|
||
```
|
||
|
||
- 实现比较
|
||
|
||
巧妙
|
||
|
||
,通过
|
||
|
||
|
||
|
||
```
|
||
idx
|
||
```
|
||
|
||
|
||
|
||
自增,并使用【EventExecutor 数组的大小 - 1】进行进行
|
||
|
||
|
||
|
||
```
|
||
&
|
||
```
|
||
|
||
|
||
|
||
并操作。
|
||
|
||
- 因为 `-` ( 二元操作符 ) 的计算优先级高于 `&` ( 一元操作符 ) 。
|
||
- 因为 EventExecutor 数组的大小是以 2 为幂次方的数字,那么减一后,除了最高位是 0 ,剩余位都为 1 ( 例如 8 减一后等于 7 ,而 7 的二进制为 0111 。),那么无论 `idx` 无论如何递增,再进行 `&` 并操作,都不会超过 EventExecutor 数组的大小。并且,还能保证顺序递增。
|
||
|
||
## 5.4 newDefaultThreadFactory
|
||
|
||
`#newDefaultThreadFactory()` 方法,创建线程工厂对象。代码如下:
|
||
|
||
```
|
||
protected ThreadFactory newDefaultThreadFactory() {
|
||
return new DefaultThreadFactory(getClass());
|
||
}
|
||
```
|
||
|
||
- 创建的对象为 DefaultThreadFactory ,并且使用类名作为 `poolType` 。
|
||
|
||
## 5.5 next
|
||
|
||
`#next()` 方法,选择下一个 EventExecutor 对象。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public EventExecutor next() {
|
||
return chooser.next();
|
||
}
|
||
```
|
||
|
||
## 5.6 iterator
|
||
|
||
`#iterator()` 方法,获得 EventExecutor 数组的迭代器。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public Iterator<EventExecutor> iterator() {
|
||
return readonlyChildren.iterator();
|
||
}
|
||
```
|
||
|
||
- 为了避免调用方,获得迭代器后,对 EventExecutor 数组进行修改,所以返回是**不可变**的 EventExecutor 数组 `readonlyChildren` 的迭代器。
|
||
|
||
## 5.7 executorCount
|
||
|
||
`#executorCount()` 方法,获得 EventExecutor 数组的大小。代码如下:
|
||
|
||
```
|
||
public final int executorCount() {
|
||
return children.length;
|
||
}
|
||
```
|
||
|
||
## 5.8 newChild
|
||
|
||
`#newChild(Executor executor, Object... args)` **抽象**方法,创建 EventExecutor 对象。代码如下:
|
||
|
||
```
|
||
protected abstract EventExecutor newChild(Executor executor, Object... args) throws Exception;
|
||
```
|
||
|
||
- 子类实现该方法,创建其对应的 EventExecutor 实现类的对象。
|
||
|
||
## 5.9 关闭相关方法
|
||
|
||
如下是关闭相关的方法,比较简单,胖友自己研究:
|
||
|
||
- `#terminationFuture()`
|
||
- `#shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit)`
|
||
- `#shutdown()`
|
||
- `#awaitTermination(long timeout, TimeUnit unit)`
|
||
- `#isShuttingDown()`
|
||
- `#isShutdown()`
|
||
- `#isTerminated()`
|
||
|
||
# 6. EventLoopGroup
|
||
|
||
`io.netty.channel.EventExecutorGroup` ,继承 EventExecutorGroup 接口,EventLoop 的分组接口。代码如下:
|
||
|
||
```
|
||
// ========== 自定义接口 ==========
|
||
|
||
/**
|
||
* Register a {@link Channel} with this {@link EventLoop}. The returned {@link ChannelFuture}
|
||
* will get notified once the registration was complete.
|
||
*/
|
||
ChannelFuture register(Channel channel);
|
||
ChannelFuture register(ChannelPromise promise);
|
||
@Deprecated
|
||
ChannelFuture register(Channel channel, ChannelPromise promise);
|
||
|
||
// ========== 实现自 EventExecutorGroup 接口 ==========
|
||
|
||
@Override
|
||
EventLoop next();
|
||
```
|
||
|
||
- `#next()` 方法,选择下一个 EventLoop 对象。
|
||
- `#register(...)` 方法,注册 Channel 到 EventLoopGroup 中。实际上,EventLoopGroup 会分配一个 EventLoop 给该 Channel 注册。
|
||
|
||
# 7. MultithreadEventLoopGroup
|
||
|
||
`io.netty.channel.MultithreadEventLoopGroup` ,实现 EventLoopGroup 接口,继承 MultithreadEventExecutorGroup 抽象类,**基于多线程**的 EventLoop 的分组抽象类。
|
||
|
||
## 7.1 构造方法
|
||
|
||
```
|
||
/**
|
||
* 默认 EventLoop 线程数
|
||
*/
|
||
private static final int DEFAULT_EVENT_LOOP_THREADS;
|
||
|
||
static {
|
||
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt("io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
|
||
|
||
if (logger.isDebugEnabled()) {
|
||
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
|
||
}
|
||
}
|
||
|
||
protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
|
||
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
|
||
}
|
||
|
||
protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
|
||
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
|
||
}
|
||
|
||
protected MultithreadEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory, Object... args) {
|
||
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, chooserFactory, args);
|
||
}
|
||
```
|
||
|
||
- ```
|
||
DEFAULT_EVENT_LOOP_THREADS
|
||
```
|
||
|
||
|
||
|
||
属性,EventLoopGroup 默认拥有的 EventLoop 数量。因为一个 EventLoop 对应一个线程,所以为 CPU 数量 * 2 。
|
||
|
||
- 为什么会 * 2 呢?因为目前 CPU 基本都是超线程,**一个 CPU 可对应 2 个线程**。
|
||
- 在构造方法未传入 `nThreads` 方法参数时,使用 `DEFAULT_EVENT_LOOP_THREADS` 。
|
||
|
||
## 7.2 newDefaultThreadFactory
|
||
|
||
newDefaultThreadFactory
|
||
|
||
`#newDefaultThreadFactory()` 方法,创建线程工厂对象。代码如下:
|
||
|
||
```
|
||
@Override
|
||
protected ThreadFactory newDefaultThreadFactory() {
|
||
return new DefaultThreadFactory(getClass(), Thread.MAX_PRIORITY);
|
||
}
|
||
```
|
||
|
||
- 覆盖父类方法,增加了线程优先级为 `Thread.MAX_PRIORITY` 。
|
||
|
||
## 7.3 next
|
||
|
||
`#next()` 方法,选择下一个 EventLoop 对象。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public EventLoop next() {
|
||
return (EventLoop) super.next();
|
||
}
|
||
```
|
||
|
||
- 覆盖父类方法,将返回值转换成 EventLoop 类。
|
||
|
||
## 7.4 newChild
|
||
|
||
`#newChild(Executor executor, Object... args)` **抽象**方法,创建 EventExecutor 对象。代码如下:
|
||
|
||
```
|
||
@Override
|
||
protected abstract EventLoop newChild(Executor executor, Object... args) throws Exception;
|
||
```
|
||
|
||
- 覆盖父类方法,返回值改为 EventLoop 类。
|
||
|
||
## 7.5 register
|
||
|
||
`#register()` 方法,注册 Channel 到 EventLoopGroup 中。实际上,EventLoopGroup 会分配一个 EventLoop 给该 Channel 注册。代码如下:
|
||
|
||
```
|
||
@Override
|
||
public ChannelFuture register(Channel channel) {
|
||
return next().register(channel);
|
||
}
|
||
|
||
@Override
|
||
public ChannelFuture register(ChannelPromise promise) {
|
||
return next().register(promise);
|
||
}
|
||
|
||
@Deprecated
|
||
@Override
|
||
public ChannelFuture register(Channel channel, ChannelPromise promise) {
|
||
return next().register(channel, promise);
|
||
}
|
||
```
|
||
|
||
- Channel 注册的 EventLoop ,通过 `#next()` 方法来选择。
|
||
|
||
# 8. NioEventLoopGroup
|
||
|
||
`io.netty.channel.nio.NioEventLoopGroup` ,继承 MultithreadEventLoopGroup 抽象类,NioEventLoop 的分组实现类。
|
||
|
||
## 8.1 构造方法
|
||
|
||
```
|
||
public NioEventLoopGroup() {
|
||
this(0);
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads) {
|
||
this(nThreads, (Executor) null);
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
|
||
this(nThreads, threadFactory, SelectorProvider.provider());
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, Executor executor) {
|
||
this(nThreads, executor, SelectorProvider.provider());
|
||
}
|
||
|
||
public NioEventLoopGroup(
|
||
int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
|
||
this(nThreads, threadFactory, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory,
|
||
final SelectorProvider selectorProvider, final SelectStrategyFactory selectStrategyFactory) {
|
||
super(nThreads, threadFactory, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider) {
|
||
this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
|
||
final SelectStrategyFactory selectStrategyFactory) {
|
||
super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
|
||
final SelectorProvider selectorProvider,
|
||
final SelectStrategyFactory selectStrategyFactory) {
|
||
super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory,
|
||
RejectedExecutionHandlers.reject());
|
||
}
|
||
|
||
public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
|
||
final SelectorProvider selectorProvider,
|
||
final SelectStrategyFactory selectStrategyFactory,
|
||
final RejectedExecutionHandler rejectedExecutionHandler) {
|
||
super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory, rejectedExecutionHandler);
|
||
}
|
||
```
|
||
|
||
- 构造方法比较多,主要是明确了父构造方法的
|
||
|
||
|
||
|
||
```
|
||
Object ... args
|
||
```
|
||
|
||
|
||
|
||
方法参数:
|
||
|
||
- 第一个参数,`selectorProvider` ,`java.nio.channels.spi.SelectorProvider` ,用于创建 Java NIO Selector 对象。
|
||
- 第二个参数,`selectStrategyFactory` ,`io.netty.channel.SelectStrategyFactory` ,选择策略工厂。详细解析,见后续文章。
|
||
- 第三个参数,`rejectedExecutionHandler` ,`io.netty.channel.SelectStrategyFactory` ,拒绝执行处理器。详细解析,见后续文章。
|
||
|
||
## 8.2 newChild
|
||
|
||
`#newChild(Executor executor, Object... args)` 方法,创建 NioEventLoop 对象。代码如下:
|
||
|
||
```
|
||
@Override
|
||
protected EventLoop newChild(Executor executor, Object... args) throws Exception {
|
||
return new NioEventLoop(this, executor,
|
||
(SelectorProvider) args[0], ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
|
||
}
|
||
```
|
||
|
||
- 通过 `Object... args` 方法参数,传入给 NioEventLoop 创建需要的参数。
|
||
|
||
## 8.3 setIoRatio
|
||
|
||
`#setIoRatio(int ioRatio)` 方法,设置所有 EventLoop 的 IO 任务占用执行时间的比例。代码如下:
|
||
|
||
```
|
||
/**
|
||
* Sets the percentage of the desired amount of time spent for I/O in the child event loops. The default value is
|
||
* {@code 50}, which means the event loop will try to spend the same amount of time for I/O as for non-I/O tasks.
|
||
*/
|
||
public void setIoRatio(int ioRatio) {
|
||
for (EventExecutor e: this) {
|
||
((NioEventLoop) e).setIoRatio(ioRatio);
|
||
}
|
||
}
|
||
```
|
||
|
||
## 8.4 rebuildSelectors
|
||
|
||
`#rebuildSelectors()` 方法,重建所有 EventLoop 的 Selector 对象。代码如下:
|
||
|
||
```
|
||
/**
|
||
* Replaces the current {@link Selector}s of the child event loops with newly created {@link Selector}s to work
|
||
* around the infamous epoll 100% CPU bug.
|
||
*/
|
||
public void rebuildSelectors() {
|
||
for (EventExecutor e: this) {
|
||
((NioEventLoop) e).rebuildSelector();
|
||
}
|
||
}
|
||
```
|
||
|
||
- 因为 JDK 有 [epoll 100% CPU Bug](https://www.jianshu.com/p/da4398743b5a) 。实际上,NioEventLoop 当触发该 Bug 时,也会**自动**调用 `NioEventLoop#rebuildSelector()` 方法,进行重建 Selector 对象,以修复该问题。
|
||
|
||
# 666. 彩蛋
|
||
|
||
还是比较简单的文章。如果有不清晰的地方,也可以阅读如下文章:
|
||
|
||
- 永顺 [《Netty 源码分析之 三 我就是大名鼎鼎的 EventLoop(一)》](https://segmentfault.com/a/1190000007403873#articleHeader2) 的 [「NioEventLoopGroup 实例化过程」](https://svip.iocoder.cn/Netty/EventLoop-2-EventLoopGroup/#) 小节。
|
||
- Hypercube [《自顶向下深入分析Netty(四)—— EventLoop-1》](https://www.jianshu.com/p/da4398743b5a) |